

Microsoft® Windows NT™ 3.5/3.51:
TCP/IP Implementation Details

A White Paper from Corporate Network Systems
and the Business Systems Division

Microsoft® Windows NT™ 3.5/3.51:
TCP/IP Implementation Details

TCP/IP Protocol Stack and Services, Version 1.0

A White Paper from Corporate Network Systems
and the Business Systems Division

Dave MacDonald
September 1995

Legal Notice

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as
of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the
date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN
THIS DOCUMENT.

Microsoft, Windows, and MS-DOS are registered trademarks and Windows NT is a trademark of Microsoft Corporation.

0995
Part No. 098-62170

Table of Contents
Table of Contents

Introduction

Capabilities/Functionality
Overview
Support for standard features
Performance enhancements
Services available
Internet RFCs (Requests for Comments) Supported by Microsoft Windows NT 3.5x TCP/IP

Architectural Model
Overview

The NDIS lnterface and Below
Overview

Network Driver Interface Specification (3.0)
Link Layer Functionality
MTU (Maximum Transfer Unit)

Core Protocol Stack Components and the TDI Interface
Overview
Address Resolution Protocol (ARP)

ARP Cache
ARP Cache Aging

Internet Protocol (IP)
Routing
Duplicate IP Address Detection
Multi-homing
Classless Interdomain Routing (CIDR)
IP Multicasting

Internet Control Message Protocol (ICMP)
Maintaining Route Tables
Path Maximum Transfer Unit (PMTU) Discovery
Use Of ICMP For Diagnosing Problems
Flow Control Via ICMP

Internet Group Management Protocol (IGMP)
IP/ARP Extensions For IP Multicasting
Multicast Extensions to Windows Sockets

Transmission Control Protocol (TCP)
TCP Receive Window Size Calculation
Delayed Acknowledgments
PMTU (Path Maximum Transfer Unit) Discovery
Dead Gateway Detection
Re-transmission Behavior
TCP Keepalive Messages
Slow Start Algorithm and Congestion Avoidance
Silly Window Syndrome (SWS)
Nagle Algorithm
Throughput Considerations

User Datagram Protocol (UDP)

UDP and Name Resolution
Mailslots over UDP

NetBIOS over TCP/IP
The Transport Driver Interface (TDI)

TDI features

Network Application Interfaces
Overview
Windows Sockets

Applications
Name Resolution
Support for IP Multicasting
The Backlog Parameter

NetBIOS Over TCP/IP
NetBIOS Names
NetBIOS Name Registration and Resolution
NetBIOS Over TCP Sessions
NetBIOS Datagram Services

Microsoft TCP/IP Client and Server Applications
Overview
Dynamic Host Configuration Protocol (DHCP)

Obtaining Configuration Parameters Using DHCP
Lease Expiration and Renewal

Windows Internet Name Service (WINS)
WINS Name Registration and Resolution
WINS in a DHCP Environment

Domain Name System (DNS)
Integration of the DNS and WINS

The Browser
Master Browser Elections
Maintaining Browse Lists
Requesting Browse Lists
The Domain Master Browser
Browser Enhancements

Windows NT Workstation and Windows NT Server Services
Logging On
Connecting to Network Resources
Optimizations

Microsoft Remote Access PPP/SLIP Support
RAS Servers
RAS Clients
Using RAS To Route Between Networks
Bandwidth Considerations

Simple Network Management Protocol (SNMP) Agent

TCP/IP Troubleshooting Tools and Strategies
Overview
IPConfig
Ping
ARP
Tracert
Route
Netstat
NBTStat

Performance Monitor
Microsoft Network Monitor
The Microsoft KnowledgeBase (KB)
Summary

Appendix A: TCP/IP Configuration Parameters
Introduction
Standard Parameters Configurable using the Registry Editor
Optional Parameters Configurable using the Registry Editor
Parameters Configurable from the NCPA
Parameters Configurable via the Route.exe Command in Windows NT 3.51
Non-Configurable Parameters

Appendix B: NetBT (NetBIOS over TCP) Configuration Parameters
Introduction
Standard Parameters Configurable from the Registry Editor
Optional Parameters Configurable from the Registry Editor
Parameters Configurable from the NCPA
Non-Configurable Parameters

Appendix C: Windows Sockets (AFD.SYS) Registry Parameters
Introduction
Performance-Related Values
Service Resolution and Registration Parameters
TCP/IP Name Resolution Parameters

Appendix D: Microsoft FTP Server Configuration Parameters
Introduction
Configurable Parameters

Introduction
Microsoft® has adopted TCP/IP as the strategic enterprise network transport for its
platforms. Several years ago, Microsoft started an ambitious project to create a TCP/IP
stack and services that would greatly improve the scalability of Microsoft networking.
With the release of the Windows® NT™ 3.5 operating system, Microsoft introduced a
completely re-written TCP/IP stack. This new stack was designed to incorporate many
of the advances in performance and ease of administration made over the past decade.
The stack is a high-performance, portable, 32-bit implementation of the industry
standard TCP/IP protocol.

The goals in designing the new TCP/IP stack were to make it:

n Standards compliant

n Interoperable

n Portable

n Scaleable

n High performance

n Versatile

n Self-tuning

n Easy to administer

n Adaptable

The base code described here is shared by all Microsoft 32-bit TCP/IP protocol stacks
(TCP/IP-32, Windows NT™, and Windows® 95); however, there are small differences
in implementation, configuration methods, and available services.

This paper is intended to provide implementation details and is a supplement to the
Microsoft Windows NT 3.5 and 3.51 TCP/IP manuals. The primary target audience
consists of network engineers and support professionals who are already familiar with
TCP/IP. The Microsoft TCP/IP protocol suite is examined in this paper from the bottom
up.

Network traces are used throughout to help illustrate concepts. These traces were
gathered and formatted using Microsoft Network Monitor, a software-based protocol
tracing and analyses tool included in the Microsoft Systems Management Server
product.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 1

Capabilities/Functionality

Overview
The TCP/IP suite for Windows NT 3.5x was designed to make it much easier to
integrate Microsoft systems into large-scale corporate and government networks. The
product offers many new features and services to make administration easier and to
improve interoperability. This TCP/IP suite makes Windows NT an “Internet Ready”
platform.

Support for standard features
n Ability to bind to multiple network cards with different media types

n Logical multi-homing

n Internal IP routing capability

n IGMP (IP Multicasting) support

n Duplicate IP address detection

n Multiple default gateways

n Dead gateway detection

n Automatic PMTU (Path Maximum Transfer Unit) discovery

Performance enhancements
n Greatly reduced broadcast traffic

n Shorter code paths/reduced CPU utilization

n Self-tuning features

Services available
n DHCP (Dynamic Host Configuration Protocol) client and server

n WINS (Windows Internet Name Service), a NetBIOS name server

n Dial-up (PPP/SLIP) support

n TCP/IP network printing (lpr/lpd)

n SNMP agent

n NetBIOS interface

n Windows Sockets interface

n RPC (Remote Procedure Call)

n NetDDE (Network Dynamic Data Exchange)

n WAN (Wide Area Network) browsing support

n High performance FTP server

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 2

n Basic TCP/IP connectivity utilities, including: finger, ftp, rcp, rexec, rsh,
telnet, and tftp

n Server software for simple network protocols, including: Character Generator,
Daytime, Discard, Echo, and Quote of the Day

n TCP/IP management and diagnostic tools, including: arp, hostname, ipconfig,
lpq, nbtstat, netstat, ping, route, and tracert

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 3

Internet RFCs (Requests for Comments) Supported by
Microsoft Windows NT 3.5x TCP/IP
RFCs are a constantly evolving series of reports, proposals for protocols, and protocol
standards used by the Internet community. RFCs can be obtained via FTP from
NIS.NSF.NET, NISC.JVNC.NET, VENERA.ISI.EDU, WUARCHIVE.WUSTL.EDU,
SRC.DOC.IC.AC.UK, FTP.CONCERT.NET, DS.INTERNIC.NET, or NIC.DDN.MIL.
Details on obtaining RFCs via FTP or EMAIL may be obtained by sending an EMAIL
message to "rfc-info@ISI.EDU" with the message body "help: ways_to_get_rfcs". For
example:

To: rfc-info@ISI.EDU
Subject: getting rfcs
help: ways_to_get_rfcs

The relevant RFCs supported by this version of Microsoft TCP/IP (and for Microsoft
Remote Access Service) are listed below:

RFC Title

768 User Datagram Protocol (UDP)
783 Trivial File Transfer Protocol (TFTP)
791 Internet Protocol (IP)
792 Internet Control Message Protocol (ICMP)
793 Transmission Control Protocol (TCP)
816 Fault Isolation and Recovery
826 Address Resolution Protocol (ARP)
854 Telnet Protocol (TELNET)
862 Echo Protocol (ECHO)
863 Discard Protocol (DISCARD)
864 Character Generator Protocol (CHARGEN)
865 Quote of the Day Protocol (QUOTE)
867 Daytime Protocol (DAYTIME)
894 IP over Ethernet
919, 922 IP Broadcast Datagrams (broadcasting with subnets)
950 Internet Standard Subnetting Procedure
959 File Transfer Protocol (FTP)
1001, 1002 NetBIOS Service Protocols
1009 Requirements for Internet Gateways
1034, 1035 Domain Name System (DNS)
1042 IP over Token Ring
1055 Transmission of IP over Serial Lines (IP-SLIP)
1112 Internet Gateway Multicast Protocol (IGMP)
1122, 1123 Host Requirements (communications and applications)
1134 Point to Point Protocol (PPP)
1144 Compressing TCP/IP Headers for Low-Speed Serial Links
1157 Simple Network Management Protocol (SNMP)
1179 Line Printer Daemon Protocol
1188 IP over FDDI

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 4

RFC Title

1191 Path MTU Discovery
1201 IP over ARCNET
1231 IEEE 802.5 Token Ring MIB (MIB-II)
1332 PPP Internet Protocol Control Protocol (IPCP)
1334 PPP Authentication Protocols
1518 An Architecture for IP Address Allocation with CIDR
1519 Classless Inter-Domain Routing (CIDR): An Address Assignment and

Aggregation Strategy
1533 DHCP Options and BOOTP Vendor Extensions1

1534 Interoperation Between DHCP and BOOTP
1541 Dynamic Host Configuration Protocol (DHCP)
1542 Clarifications and Extensions for the Bootstrap Protocol
1547 Requirements for Point to Point Protocol (PPP)
1548 Point to Point Protocol (PPP)
1549 PPP in High-level Data Link Control (HDLC) Framing
1552 PPP Internetwork Packet Exchange Control Protocol (IPXCP)
Draft RFCs PPP over ISDN; PPP over X.25; Compression Control Protocol

1 The Microsoft DHCP server does not support BOOTP. BOOTP requests are silently ignored. However, a DHCP server and a BOOTP server can co-exist.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 5

Architectural Model

Overview
The Microsoft TCP/IP protocol suite is comprised of core protocol elements, services,
and the interfaces between them. The Transport Driver Interface (TDI) and the Network
Driver Interface (NDIS) are public and their specifications are available from
Microsoft2. In addition, there are a number of higher level interfaces available to user-
mode applications. The two most commonly used are Windows Sockets and NetBIOS.

Figure 1: The Windows NT TCP/IP Network Model

2 Specifications and programming information are included in the Windows NT Device Driver Kit (DDK). Some information is also available from the
Microsoft Internet site (http://www.microsoft.com and ftp://ftp.microsoft.com).

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 6

Network Media

Network Card Driver(s)

User Mode

Kernel Mode

TDI Interface
NetBIOS SupportWindows Sockets

NDIS Interface

NetBT
UDPTCP

IGMP

ARP

ICMP IP

The NDIS lnterface and Below

Overview
Microsoft networking protocols communicate with network card drivers using the
Network Driver Interface Specification (NDIS). Much of the OSI model link layer
functionality is implemented in the protocol stack. This makes development of network
card drivers much simpler.

Network Driver Interface Specification (3.0)
The NDIS interface supports basic services that allow a protocol module to send raw
packets over a network device, and allow it to be notified of incoming packets received
by a network device. NDIS-compliant drivers are available for a wide variety of
network interface cards (NICs) from many vendors. The NDIS interface allows multiple
protocol drivers of different types to bind to a single NIC driver, and allows a single
protocol to bind to multiple NIC drivers. The NDIS specification describes the
multiplexing mechanism used to accomplish this. Bindings can be viewed or changed
from the Windows NT network control panel.

Since the NDIS interface handles raw packets, the protocol stack is normally
responsible for building each frame, including MAC (Media Access Control) layer
headers. This means that the protocol stack must explicitly support each media type.
Windows NT 3.5x TCP/IP provides support for:

n Ethernet (and 802.3 SNAP)

n FDDI

n Token Ring (802.5)

n ARCNET

n WAN (switched virtual circuit wide area media, such as ISDN, X.25, and dial-up or
dedicated asynchronous lines)

In addition, there are now some ATM adapters available for Windows NT. The drivers
for these adapters use “LAN emulation” to appear to the protocol stack as a supported
media type, such as Ethernet.

Link Layer Functionality
Link layer functionality is divided between the network interface card/driver
combination and the low-level protocol stack driver. The network card/driver
combination filters are based on the destination MAC address of each frame. Normally,
the hardware filters out all incoming frames except those containing one of the
following destination addresses:

n The address of the adapter

n The all 1’s broadcast address (FF-FF-FF-FF-FF-FF)

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 7

n Multicast addresses that a protocol driver on this host has registered interest in
using an NDIS primitive

Because this first filtering decision is made by the hardware, all frames not meeting the
filter criteria are discarded by the NIC without any CPU processing. All frames
(including broadcasts) that do pass the hardware filter get passed up to the NIC driver
through a hardware interrupt3. The NIC driver is software on the computer, so any
frames that make it this far require some CPU time to process. The NIC driver brings
the frame into system memory from the interface card. Then the frame is indicated
(passed up) to the appropriate bound transport driver(s). The NDIS specification
provides more detail on this process.

Frames are indicated up to all bound transport drivers, in the order that they are bound.
By default, the binding order is the alphabetical order of their key names in the registry.

As a packet traverses a network or series of networks, the source MAC address is
always that of the NIC that placed it on the media, and the destination MAC address is
that of the NIC that is intended to pull it off the media. This means that in a routed
network, the source and destination MAC address change with each “hop” through a
network-layer device (router).

MTU (Maximum Transfer Unit)
Each media type has a maximum frame size that cannot be exceeded. The link layer is
responsible for discovering this MTU and reporting it to the protocols above. NDIS
drivers may be queried for the local MTU by the protocol stack. Knowledge of the
MTU for an interface is used by upper layer protocols such as TCP, which optimizes
packet sizes for each media automatically.

If a NIC driver such as an ATM driver uses LAN emulation mode, it may report that it
has an MTU higher than what is expected for that media type. For instance, it may
emulate Ethernet but report an MTU of 9180 bytes. Windows NT will accept and use
the MTU size reported by the adapter even when it exceeds the normal MTU for a
given media type.

3 Most NICs have the ability to be placed into “promiscuous mode.” When placed in this mode, the NIC does not perform any address filtering on frames
that appear on the media. Instead, it indicates every frame upwards that passes the cyclic redundancy check (CRC). This feature is used by some protocol
analysis software, such as Microsoft Network Monitor.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 8

Core Protocol Stack Components and the TDI Interface

Overview
The core protocol stack components are those shown between the NDIS and TDI
interfaces in Figure 1. They are implemented in the Windows NT TCPIP.SYS driver.
The Microsoft stack is accessible using the TDI interface and the NDIS interface, but
does not support “raw” sockets access to the IP layer.

Address Resolution Protocol (ARP)
IP address-to-MAC address resolution for outgoing packets is performed by ARP. As
each outgoing IP datagram is encapsulated into a frame, source and destination MAC
addresses must be added. Determining the destination MAC address for each frame is
the responsibility of ARP.

ARP compares the destination IP address on every outbound IP datagram to the ARP
cache for the NIC that frame will be sent over. If there is a matching entry, then the
MAC address is retrieved from the cache. If not, ARP broadcasts an ARP Request
Packet onto the local subnet, requesting that the owner of the IP address in question
reply with its MAC address. If the packet is going through a router, ARP resolves the
MAC address for that next-hop router rather than the final destination host. When an
ARP reply is received, the ARP cache is updated with the new information, and it is
used to address the packet at the link layer.

ARP Cache
Entries in the ARP cache may be viewed, added, or deleted using the ARP utility4.
Examples are shown below. Entries added manually are static, and do not get aged out
of the cache like dynamic entries do.

To view the ARP cache:

C:\>arp -a
Interface: 199.199.40.123
 Internet Address Physical Address Type
 199.199.40.1 00-00-0c-1a-eb-c5 dynamic
 199.199.40.124 00-dd-01-07-57-15 dynamic
Interface: 10.57.8.190
 Internet Address Physical Address Type
 10.57.9.138 00-20-af-1d-2b-91 dynamic

The computer in this example is multi-homed (has more than one NIC), so there is a
separate ARP cache for each interface. ARP -s can be used to add a static entry to the
arp cache used by the second interface, for the host whose IP address is 10.57.10.32 and
whose NIC address is 00608C0E6C6A, shown on the next page:

4 Windows NT 3.51 includes fixes to the ARP utility related to adding entries. See the Microsoft KnowledgeBase for details.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 9

C:\>arp -s 10.57.10.32 00-60-8c-0e-6c-6a 10.57.8.190
C:\>arp -a
Interface: 199.199.40.123
 Internet Address Physical Address Type
 199.199.40.1 00-00-0c-1a-eb-c5 dynamic
 199.199.40.124 00-dd-01-07-57-15 dynamic
Interface: 10.57.8.190
 Internet Address Physical Address Type
 10.57.9.138 00-20-af-1d-2b-91 dynamic
 10.57.10.32 00-60-8c-0e-6c-6a static

ARP Cache Aging
Windows NT 3.5x adjusts the size of the ARP cache automatically to meet the needs of
the system. Entries are aged out of the ARP cache if they are not used by any outgoing
datagrams for two minutes. Entries that are being referenced get aged out of the ARP
cache after 10 minutes. Entries added manually are not aged out of the cache. Entries
can be deleted from the cache using arp -d as shown below:

C:\>arp -d 10.57.10.32
C:\>arp -a
Interface: 199.199.40.123
 Internet Address Physical Address Type
 199.199.40.1 00-00-0c-1a-eb-c5 dynamic
 199.199.40.124 00-dd-01-07-57-15 dynamic
Interface: 10.57.8.190
157.57.9.1 Internet Address Physical Address Type

10.57.9.138 00-20-af-1d-2b-91 dynamic

ARP will only queue one outbound IP datagram to a given destination address while
that IP address is being resolved to a MAC address. If a UDP-based application sends
multiple IP datagrams to a single destination address without any pauses between them,
some of the datagrams may be dropped if there is no ARP cache entry already present.

Internet Protocol (IP)
IP is the “mailroom” of the TCP/IP stack, where packet sorting and delivery takes
place. At this layer, each incoming or outgoing packet is referred to as a datagram.
Each IP datagram bears the source IP address of the sender and the destination IP
address of the intended recipient. Unlike the MAC addresses, the IP addresses in a
datagram remain the same throughout a packet’s journey across an internetwork. IP
layer functions are described below.

Routing
Routing is the primary function of IP. Datagrams are handed to the IP protocol from
UDP and TCP above, and from the NIC(s) below. Each datagram is labeled with a
source and destination IP address. The IP protocol examines the destination address on
each datagram, compares it to a locally maintained route table, and decides what action
to take. There are three possibilities for each datagram:

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 10

n It can be passed up to a protocol layer above IP on the local host.

n It can be forwarded via one of the locally attached NICs.

n It can be discarded.

The route table maintains four different types of routes. They are listed below in the
order that they are searched for a match:

1. host (a route to a single, specific destination IP address)

2. subnet (a route to a subnet)

3. network (a route to an entire network)

4. default (used when there is no other match)

The route table may be viewed from the command prompt as shown below:

C:\>route print
Network Address Netmask Gateway Address Interface Metric
0.0.0.0 0.0.0.0 199.199.40.1 199.199.40.123 1
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
199.199.40.0 255.255.255.0 199.199.40.123 199.199.40.123 1
199.199.40.123 255.255.255.255 127.0.0.1 127.0.0. 1
199.199.40.255 255.255.255.255 199.199.40.123 199.199.40.123 1
224.0.0. 224.0.0.0 199.199.40.123 199.199.40.123 1
255.255.255.255 255.255.255.255 199.199.40.123 199.199.40.123 1

The route table above is for a computer with the class C IP address 199.199.40.123. It
contains 7 entries, described below:

n The first entry, to address 0.0.0.0, is the default route.
n The second entry is for the loopback address, 127.0.0.0.
n The third entry is a network route, for the network 199.199.40. The local

interface is specified as the path to this network.
n The fourth entry is a host route for the local host. Note that it specifies the

loopback address, which makes sense because a datagram bound for the
local host should be handled internally.

n The fifth entry is for the subnet broadcast address (again specifying the local
interface).

n The sixth entry is for IP multicasting, which is discussed later in this
document.

n The final entry is for the limited broadcast address.

On this host, if a packet is sent to 199.199.40.122, the table is first scanned for a host
route (not found), then for a subnet route (not found), then for a network route (that is
found). The packet is sent via the local interface 199.199.40.123. If a packet is sent to
199.200.1.1, the same search is used, and no host, subnet, or network route is found. In
this case, the packet is directed to the default gateway, by inserting the MAC address of
the default gateway into the destination MAC address field.

The route table is maintained automatically in most cases. When a host initializes,
entries for the local network(s), loopback, multicast, and configured default gateway are
added. More routes may appear in the table as the IP layer learns of them. For instance,
the default gateway for a system may advise it (using ICMP, as explained later) of a
better route to a specific network, subnet, or host. Routes also may be added manually
by using the route command. Under Windows NT 3.5, routes added manually were

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 11

temporary and would be gone from the table after a reboot. However, under Windows
NT 3.51, the -p (persistent) switch can be used with the route command to specify
permanent routes. Permanent routes are stored in the registry under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\
Parameters\PersistentRoutes

Most routers use a protocol such as RIP (Routing Information Protocol) or OSPF (Open
Shortest Path First) to exchange routing tables with each other. However, Windows NT
3.5x does not include RIP. This means that if Windows NT computers are used as
routers, they do not exchange routing tables, so manual configuration of static routes
may be necessary. Information on how to set up static routes is available in the
Windows NT TCP/IP manuals, and from the Microsoft KnowledgeBase. Another
alternative is to obtain the publicly available Multiple Provider Router beta from
Microsoft5.

By default, Windows NT systems do not behave as routers. Internal routing may be
enabled from the TCP/IP Advanced Configuration screen in the network control panel.

When running multiple logical subnets on the same physical network, the following
command can be used to tell IP to treat all subnets as local and to use ARP directly for
the destination:

route add 0.0.0.0 MASK 0.0.0.0 <my local ip address>

Thus, packets destined for “non-local” subnets will be transmitted directly onto the
local media instead of being sent to a router. In essence, the local interface card can be
designated as the default gateway. This might be useful where several class “C”
networks are being used on one physical network with no router to the outside world.

Duplicate IP Address Detection
Duplicate address detection is an important feature. When the stack is first initialized, a
“gratuitous” ARP Request is broadcast for the IP address of the local host. If another
system replies, the IP address is already in use. When this happens, the Windows NT
computer will still boot; however, IP on the offending interface is disabled, a system
log entry is generated, and an error popup is displayed. If the system that is “defending”
the address is also a Windows NT computer, a system log entry is generated and an
error popup is displayed there; however, its interface will continue to operate. After
transmitting the ARP reply, the “defending” system ARPs for its own address again so
that other hosts on the network will maintain the correct mapping for the address in
their ARP caches.

A computer using a duplicate IP address may be started while it is not attached to the
network, in which case no conflict would be detected at that point. However, if it is
then plugged into the network, the first time that it ARPs for another IP address, any
Windows NT computer with a conflicting address will detect the conflict. The computer
detecting the conflict will display an error popup and log a detailed event in the system
log. A sample event log entry is shown below:

** The system detected an address conflict for IP address 199.199.40.123 with the
system having network hardware address 00:DD:01:0F:7A:B5. Network
operations on this system may be disrupted as a result. **

5 RIP is part of the public beta of MPR (Multiple Provider Router) available from ftp.microsoft.com.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 12

Multi-homing
When a computer is configured with more than one IP address it is referred to as a
multi-homed system. Multi-homing is supported in three different manners:

n Multiple IP addresses per NIC.

n Five addresses per card may be configured using Control Panel;
however, more may be added in the registry. For details see
the IPAddress registry parameter in Appendix A.

n NetBT (NetBIOS over TCP/IP per RFC1001/1002) only supports
one IP address per interface card. When a NetBIOS name
registration is sent out, only one IP address will be registered
per interface. This registration will occur over the IP address
that is listed first in the network control panel.

n Multiple NICs per physical network.

n No restrictions other than hardware.

n Multiple networks and media types.

n No restrictions other than hardware and media support. See the
Network Interface Card/Driver section of this document for
supported media types.

When an IP datagram is sent from a multi-homed host, it will be handed down to the
interface card with the best apparent route to the destination. Accordingly, the datagram
may bear the source IP address of one interface in the multi-homed host, yet be placed
on the media by a different NIC. The source MAC address on the frame will be that of
the NIC that actually transmitted the frame onto the media, and the source IP address
will be the one that the sending application sourced it from, not necessarily one of those
associated with the sending NIC in the configuration screens in the network control
panel.

When a computer is multi-homed with NICs attached to disjoint networks (networks
that are separate from and unaware of each other, such as one connected via RAS),
routing problems may arise. It is often necessary to set up static routes to remote
networks in this scenario.

Classless Interdomain Routing (CIDR)
Also known as supernetting, CIDR may be used to consolidate several class C network
addresses into one logical network. CIDR is described in RFC1518/1519. To use
supernetting, the IP network addresses that are to be combined must share the same
high-order bits, and the subnet mask is “shortened” to take bits away from the network
portion of the address and add them to the host portion.

This is best explained with an example. The class C network addresses 199.199.5.0,
199.199.6.0, and 199.199.7.0 can be combined by using a subnet mask of
255.255.252.0 for each:

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 13

NET 199.199.5 (1100 0111 . 1100 0111 . 0000 0101.0000 0000)
NET 199.199.6 (1100 0111 . 1100 0111 . 0000 0110.0000 0000)
NET 199.199.7 (1100 0111 . 1100 0111 . 0000 0111.0000 0000)
MASK 255.255.252.0 (1111 1111 . 1111 1111 . 1111 1100.0000 0000)

When routing decisions are made, only the bits covered by the subnet mask are used,
thus making these addresses all appear to be part of the same network for routing
purposes. Any routers in use must also support CIDR and may require special
configuration.

IP Multicasting
IP multicasting is used to provide efficient multicast services to clients that may not be
located on the same network segment. Windows Sockets applications can join a
multicast group in order to participate in a wide-area conference, for instance.

Windows NT 3.5x is level-2 (send and receive) compliant with RFC1112. IGMP is the
protocol used to manage IP multicasting, as described later in this document.

Internet Control Message Protocol (ICMP)
ICMP is a maintenance protocol specified in RFC792 and is normally considered to be
part of the IP layer. ICMP messages are encapsulated within IP datagrams, so they may
be routed throughout an internetwork. ICMP is used by Windows NT to:

n Build and maintain route tables.

n Assist in Path Maximum Transfer Unit (PMTU) discovery.

n Diagnose problems (ping, tracert).

n Adjust flow control to prevent link or router saturation.

Maintaining Route Tables
When a Windows NT computer is initialized, the route table normally contains only a
few entries. One of those specifies a default gateway. Datagrams that have a destination
IP address with no match in the route table are sent to the default gateway. However,
since routers share information about network topology with each other, the default
gateway may know of a better route to a given address. When this is the case, upon
receiving a datagram that could be taking the better path, the router forwards the
datagram normally, then advises the sender of the better route using an ICMP redirect
message. These messages can specify redirection for one host, a subnet, or for an entire
network. When a Windows NT computer receives an ICMP redirect, a check is
performed to be sure that it came from the first-hop gateway in the current route, and
that the gateway is on a directly connected network. If so, the route table is adjusted
accordingly. If the ICMP redirect did not come from the first-hop gateway in the
current route, or if that gateway is not on a directly connected network, then the ICMP
redirect is ignored.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 14

Path Maximum Transfer Unit (PMTU) Discovery
PMTU discovery is used by TCP, as described later in this document. The mechanism
relies on ICMP destination unreachable messages.

Use Of ICMP For Diagnosing Problems
Ping is used to send ICMP echo requests to an IP address, and wait for ICMP echo
responses. Ping reports on the number of responses received and the time interval
between sending the request and receiving the response. There are many different
options that can be used with the ping utility. Ping is explored in more detail in the
troubleshooting section of this document.

Tracert is a route-tracing utility that can be very useful. Tracert works by sending
ICMP echo requests to an IP address, while incrementing the TTL (Time To Live) field
in the IP header by one starting at one, and analyzing the ICMP errors that get returned.
Each succeeding echo request should get one hop further into the network before the
TTL field reaches 0 and an ICMP Time Exceeded error is returned by the router
attempting to forward it. Tracert simply prints out an ordered list of the routers in the
path that returned these error messages. If the -d (don’t do a DNS lookup on each IP
address) switch is used, then the IP address of the near-side interface of the routers is
reported. The example below illustrates using tracert to find the route from a computer
dialed in over PPP to an Internet provider in Seattle to www.whitehouse.gov.
C:\>tracert www.whitehouse.gov
Tracing route to www.whitehouse.gov [128.102.252.1]
over a maximum of 30 hops:
 1 300 ms 281 ms 280 ms roto.seanet.com [199.181.164.100]
 2 300 ms 301 ms 310 ms sl-stk-1-S12-T1.sprintlink.net [144.228.192.65]
 3 300 ms 311 ms 320 ms sl-stk-5-F0/0.sprintlink.net [144.228.40.5]
 4 380 ms 311 ms 340 ms icm-fix-w-H2/0-T3.icp.net [144.228.10.22]
 5 310 ms 301 ms 320 ms arc-nas-gw.arc.nasa.gov [192.203.230.3]
 6 300 ms 321 ms 320 ms n254-ed-cisco7010.arc.nasa.gov [128.102.64.254]
 7 360 ms 361 ms 371 ms www.whitehouse.gov [128.102.252.1]

Flow Control Via ICMP
If a host is sending datagrams to another at a rate that is saturating the routers or links
between them, it may receive an ICMP Source Quench message asking it to slow down.
The TCP/IP stack in Windows NT honors a source quench message as long as it
contains the header fragment of one of its own datagrams from an active TCP
connection. If a Windows NT computer is being used as a router, and it is unable to
forward datagrams at the rate they are arriving, it drops any datagrams that cannot be
buffered but does not send ICMP source quench messages to the senders.

Internet Group Management Protocol (IGMP)
Windows NT 3.5 and 3.51 provide level 2 (full) support for IP multicasting as specified
in RFC1112. The introduction to RFC1112 provides a good overall summary of IP
multicasting. The text reads:

IP multicasting is the transmission of an IP datagram to a "host group", a set of
zero or more hosts identified by a single IP destination address. A multicast
datagram is delivered to all members of its destination host group with the same

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 15

"best-efforts" reliability as regular unicast IP datagrams, i.e., the datagram is not
guaranteed to arrive intact at all members of the destination group or in the same
order relative to other datagrams.

The membership of a host group is dynamic; that is, hosts may join and leave
groups at any time. There is no restriction on the location or number of members
in a host group. A host may be a member of more than one group at a time. A
host need not be a member of a group to send datagrams to it.

A host group may be permanent or transient. A permanent group has a well-
known, administratively assigned IP address. It is the address, not the membership
of the group, that is permanent; at any time a permanent group may have any
number of members, even zero. Those IP multicast addresses that are not reserved
for permanent groups are available for dynamic assignment to transient groups
that exist only as long as they have members.

Internetwork forwarding of IP multicast datagrams is handled by "multicast
routers" that may be co-resident with, or separate from, Internet gateways. A host
transmits an IP multicast datagram as a local network multicast that reaches all
immediately-neighboring members of the destination host group. If the datagram
has an IP time-to-live greater than 1, the multicast router(s) attached to the local
network take responsibility for forwarding it towards all other networks that have
members of the destination group. On those other member networks that are
reachable within the IP time-to-live, an attached multicast router completes
delivery by transmitting the datagram as a local multicast.

IP/ARP Extensions For IP Multicasting
To support IP multicasting, an additional route is defined by the system. The route
(added by default) specifies that if a datagram is being sent to a multicast host group, it
should be sent to the IP address of the host group via the local interface card, not
forwarded to the default gateway. The following route (seen with the “route print”
command) illustrates this:

Network Address Netmask Gateway Address Interface Metric
224.0.0.0 224.0.0.0 10.57.9.138 10.57.9.138 1
Host group addresses are easily identified, as they are from the class D range, 224.0.0.0
to 239.255.255.255. These IP addresses all have “1110” as their high-order 4 bits.

To send a packet to a host group using the local interface, the IP address must be
resolved to a MAC address. From RFC1112:

An IP host group address is mapped to an Ethernet multicast address
by placing the low-order 23-bits of the IP address into the low-order
23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex).
Because there are 28 significant bits in an IP host group address,
more than one host group address may map to the same Ethernet
multicast address.

For instance, a datagram addressed to the multicast address 225.0.0.5 would be sent to
the (Ethernet) MAC address 01-00-5E-00-00-05. This MAC address is formed by the
junction of 01-00-5E and the 23 low-order bits of 225.0.0.5 (00-00-05).

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 16

Since more than one host group address might map to the same Ethernet multicast
address, the NIC may indicate up some multicasts for a host group for which no local
applications have registered interest. These extra multicasts are discarded.

Finally, the protocol stack must provide a means of joining and leaving host groups.

Multicast Extensions to Windows Sockets6

Internet Protocol multicasting is currently supported only on AF_INET sockets of type
SOCK_DGRAM. By default, IP multicast datagrams are sent with a time-to-live (TTL)
of 1. The setsockopt() call can be used by an application to specify a TTL. By
convention, multicast routers use TTL thresholds to determine how far to forward
datagrams. These TTL thresholds are defined as follows:

n multicast datagrams with initial TTL 0 are restricted to the same host.
n multicast datagrams with initial TTL 1 are restricted to the same subnet.
n multicast datagrams with initial TTL 32 are restricted to the same site.
n multicast datagrams with initial TTL 64 are restricted to the same region.
n multicast datagrams with initial TTL 128 are restricted to the same continent.
n multicast datagrams with initial TTL 255 are unrestricted in scope.

Transmission Control Protocol (TCP)
TCP provides a connection-based, reliable byte-stream service to applications.
Microsoft networking relies upon the TCP transport for logon, file and print sharing,
replication of information between domain controllers, transfer of browse lists, and
other common functions. It can only be used for one-to-one communications. TCP uses
a checksum on both the headers and data of each segment to reduce the chance of
network corruption going undetected.

TCP Receive Window Size Calculation
The TCP receive window size is the amount of receive data (in bytes) that can be
buffered at one time on a connection. The sending host can send only that amount of
data before waiting for an acknowledgment and window update from the receiving host.
The Windows NT 3.5x TCP/IP stack was designed to self-tune itself in most
environments. Instead of using a hard-coded default receive window size, TCP adjusts
to even increments of the MSS (maximum segment size) negotiated during connection
setup. Matching the receive window to even increments of the MSS increases the
percentage of full-sized TCP segments utilized during bulk data transmission. The
receive window size defaults in the following manner:

n TCPWindowSize = 8Kbytes rounded up to the nearest MSS increment for the
connection.

n If that isn’t at least 4 times the MSS, then it’s adjusted to 4 * MSS, with a
maximum size of 64K7

6 Details on multicast extensions for Windows Sockets are available from ftp.microsoft.com.
7 64K is the maximum window size due to the 16-bit size of the field in the TCP header. RFC1323 describes a TCP window scale option that can be used to
obtain larger receive windows; however Windows NT TCP/IP does not yet implement that option.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 17

For Ethernet, the window will normally be set to 8760 bytes (8192 rounded up to six
1460-byte segments), and for 16/4 Token Ring or FDDI it will be around 16Kbytes.
These values are default and it’s not generally advisable to alter them; however, there
are two methods for setting the receive window size to specific values:

1. The TcpWindowSize registry parameter (a global setting for the system).

2. The setsockopt() Windows Sockets call (on a per-socket basis).

Delayed Acknowledgments
Per RFC1122, TCP uses delayed acknowledgments (acks) to reduce the number of
packets sent on the media. The Microsoft stack takes a common approach to
implementing delayed acks. As data is received by TCP on a given connection, it only
sends an acknowledgment back if one of the following conditions is met:

n If no ack was sent yet for the previous segment received.

n If a segment was received, and no other segment arrives within 200ms.

In summary, normally an ack is sent for every other TCP segment received on a
connection, unless the delayed ack timer (200ms) expires. There is no configuration
parameter to disable delayed acks.

PMTU (Path Maximum Transfer Unit) Discovery
PMTU discovery is described in RFC1191. When a connection is established, the two
hosts involved exchange their TCP maximum segment size (MSS) values. The smaller
of the two MSS values is used for the connection. The MSS for a system is usually the
MTU at the link layer minus 40 bytes for the IP and TCP headers.

Figure 2: MTU versus MSS

When TCP segments are destined to a non-local network, the “don’t fragment” bit is set
in the IP header. Any router or media along the path may have an MTU that differs
from that of the two hosts. If a media is encountered with an MTU that is too small for
the IP datagram being routed, the router will attempt to fragment the datagram
accordingly. Upon attempting to do so, it will find that the “don’t fragment” bit in the
IP header is set. At this point, the router should inform the sending host with an ICMP
destination unreachable message that the datagram can’t be forwarded further without
fragmentation. Most routers will also specify the MTU that is allowed for the next hop
by putting the value for it in the low-order 16 bits of the ICMP header field that is
labeled "unused" in the ICMP specification. See RFC1191, section 4, for the format of
this message. Upon receiving this ICMP error message, TCP adjusts its MSS for the
connection to the specified MTU minus the TCP and IP header size, so that any further
packets sent on the connection will be no larger than the maximum size that can

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 18

MTU

MSS

DataTCP HeaderIP HeaderMAC Header

traverse the path without fragmentation. The minimum MTU permitted by RFCs is 68
bytes, and this limit is enforced by Windows NT TCP .

Some non-compliant routers may silently drop IP datagrams that cannot be fragmented,
or may not correctly report their next-hop MTU. If this occurs, it may be necessary to
make a configuration change to the PMTU detection algorithm. There are two registry
changes that can be made to the TCP/IP stack in Windows NT 3.5x to work around
these problematic routers. These registry entries are described in more detail in
Appendix A:

n EnablePMTUBHDetect – Adjusts the PMTU discovery algorithm to attempt to
detect these “black hole” routers. Black Hole detection is disabled by default.

n EnablePMTUDiscovery – Completely enables or disables the PMTU discovery
mechanism. When PMTU discovery is disabled, an MTU of 576 bytes is used for
all non-local destination addresses. PMTU discovery is enabled by default.

The PMTU between two systems can be discovered manually using ping with the -f
(don’t fragment) switch as follows:

ping -f -n <number of pings> -l <size> <destination ip address>

As shown in the example below, the size parameter can be varied until the MTU is
found. Note that the size parameter used by ping is the size of the data buffer to send,
not including headers. The ICMP header consumes 8 bytes, and the IP header would
normally be 20 bytes. In the case below, (Ethernet) the link layer MTU is the
maximum-sized ping buffer plus 28, or 1500 bytes:

C:\temp>ping -f -n 1 -l 1472 10.57.8.1
Pinging 10.57.8.1 with 1472 bytes of data:
Reply from 10.57.8.1: bytes=1472 time<10ms TTL=30
C:\temp>ping -f -n 1 -l 1473 10.57.8.1
Pinging 10.57.8.1 with 1473 bytes of data:
Packet needs to be fragmented but DF set.

In the example shown above, the router returned an ICMP error message, that ping
interpreted for us. If the router had been a “black hole” router, the ping would simply
not be answered once its size exceeded the MTU that the router could handle. Ping can
be used in this manner to detect such a router.

A sample ICMP destination unreachable error message is shown below:

+ FRAME: Base frame properties
+ FDDI: Length = 77
+ LLC: UI DSAP=0xAA SSAP=0xAA C
+ SNAP: ETYPE = 0x0800
+ IP: ID = 0x0; Proto = ICMP; Len: 56
 ICMP: Destination Unreachable, Destination: 199.199.40.125
 ICMP: Packet Type = Destination Unreachable
 ICMP: Unreachable Code = Fragmentation Needed, DF Flag Set
 ICMP: CheckSum = 0x8ABF
 ICMP: Data: Number of data bytes remaining = 28 (0x001C)
00000: 50 00 60 8C 14 C7 0E 00 00 0C 1A EB C0 AA AA 03
00010: 00 00 00 08 00 45 00 00 38 00 00 00 00 FF 01 D3
00020: 36 C7 C7 2C 01 C7 C7 2C FE 03 04 8A BF 00 00 05
00030: C7 45 00 05 F8 55 24 40 00 1F 01 1B D7 C7 C7 2C
00040: FE C7 C7 28 7D 08 00 00 75 01 00 63 00

Network Monitor did not parse the MTU suggestion in this frame, but it is shown
underlined in the hex portion of the trace. This error was generated by using ping -f -l

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 19

2000 on an FDDI-based host to send a large datagram through a router to an Ethernet
host. When the router tried to place the large frame onto the Ethernet segment, it found
that fragmentation was not allowed, so it returned the error message indicating the
largest datagram that could be forwarded is 0x5c7, or 1479 bytes.

Dead Gateway Detection
Dead gateway detection is used to allow TCP to detect failure of the default gateway,
and to make an adjustment to the IP routing table to use another default gateway. The
Microsoft TCP/IP stack uses the TRIGGERED RESELECTION method described in
RFC816. When TCP has tried one-half of the TcpMaxDataRetransmissions times to
send a packet through the default gateway, it will advise IP to switch to the next default
gateway in the list and try that one8. Additional default gateways can be configured in
the TCP/IP Advanced Configuration screen in the network control panel.

Re-transmission Behavior
TCP starts a re-transmission timer when each outbound segment is handed down to IP.
If no acknowledgment has been received for the data in a given segment before the
timer expires, then the segment is retransmitted, up to the TcpMaxDataRetransmissions
times. The default value for this parameter is 5.

The re-transmission timer is initialized to 3 seconds when a TCP connection is
established; however it is adjusted “on the fly” to match the characteristics of the
connection using Smoothed Round Trip Time (SRTT) calculations as described in
RFC793. The timer for a given segment is doubled after each re-transmission of that
segment. Using this algorithm, TCP tunes itself to the “normal” delay of a connection.
TCP connections over high-delay links will take much longer to time out than those
over low-delay links9.

The following trace clip shows the re-transmission algorithm for two hosts connected
over Ethernet on the same subnet. An FTP file transfer was in progress, when the
receiving host was disconnected from the network. Since the SRTT for this connection
was very small, the first re-transmission was sent after about one-half second. The timer
was then doubled for each of the re-transmissions that followed. After the fifth re-
transmission, the timer is once again doubled, and if no acknowledgment is received
before it expires, then the transfer is aborted.

delta source ip dest ip pro flags description
0.000 10.57.10.32 10.57.9.138 TCP .A...., len: 1460, seq: 8043781, ack: 8153124, win: 8760
0.521 10.57.10.32 10.57.9.138 TCP .A...., len: 1460, seq: 8043781, ack: 8153124, win: 8760
1.001 10.57.10.32 10.57.9.138 TCP .A...., len: 1460, seq: 8043781, ack: 8153124, win: 8760
2.003 10.57.10.32 10.57.9.138 TCP .A...., len: 1460, seq: 8043781, ack: 8153124, win: 8760
4.007 10.57.10.32 10.57.9.138 TCP .A...., len: 1460, seq: 8043781, ack: 8153124, win: 8760
8.130 10.57.10.32 10.57.9.138 TCP .A...., len: 1460, seq: 8043781, ack: 8153124, win: 8760

8 IP utilities such as ping will not trigger the dead gateway detection process. However, they will use the current default gateway, so if TCP detects a dead
gateway and selects a new one, IP utilities will then function using the new gateway.
9 Adding [1] to the registry parameter TcpMaxDataRetransmissions approximately doubles the total re-transmission time-out period for all connections.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 20

TCP Keepalive Messages
A TCP keepalive packet is simply an “ack” with the sequence number set to one less
than the current sequence number for the connection. A system receiving one of these
acks should respond with an ack for the current sequence number. Keepalives can be
used to verify that the computer at the remote end of a connection is still available. TCP
keepalives can be sent once every KeepAliveTime (defaults to 7,200,000 milliseconds
or two hours), if no other data or higher level keepalives have been carried over the
TCP connection. If there is no response to a keepalive, it is repeated once every
KeepAliveInterval seconds. KeepAliveInterval defaults to 1 second. NetBT
connections, such as those used by many Microsoft networking components, send
NetBIOS keepalives more frequently, so normally no TCP keepalives will be sent on a
NetBIOS connection. TCP keepalives are disabled by default, but Windows Sockets
applications may enable them using setsockopt().

Slow Start Algorithm and Congestion Avoidance
When a connection is established, TCP treads lightly at first in order to assess the
bandwidth of the connection and to avoid overflowing the receiving host or any other
devices/links in the path. The send window is set to one TCP segment, and if that is
acknowledged, then it is doubled to two segments10. If those are acknowledged, then it
is doubled again and so on until the amount of data being sent per burst reaches the size
of the receive window on the remote host. At that point, the slow start algorithm is no
longer in use and flow control is governed by the receive window. However, at any
time during transmission, congestion could still occur on a connection. If this happens
(evidenced by the need to re-transmit) , a congestion avoidance algorithm is used to
reduce the send window size temporarily, and to grow it back towards the receive
window size more slowly. Slow start and congestion avoidance are discussed further in
RFC1122.

Silly Window Syndrome (SWS)
Silly Window Syndrome is described in RFC1122 as follows:

In brief, SWS is caused by the receiver advancing the right window edge
whenever it has any new buffer space available to receive data and by the sender
using any incremental window, no matter how small, to send more data [TCP:5].
The result can be a stable pattern of sending tiny data segments, even though both
sender and receiver have a large total buffer space for the connection...

Windows NT TCP/IP Windows NT implements SWS avoidance per RFC1122 by not
sending more data until there is a sufficient window size advertised by the receiving
end to send a full segment. It also implements SWS on the receive end of a connection
by not opening the receive window in increments of less than a TCP segment.

Nagle Algorithm
Windows NT TCP/IP implements the Nagle algorithm described in RFC896. The
purpose of this algorithm is to reduce the number of “tiny” segments sent, especially on
high-delay (remote) links. The Nagle algorithm allows only one small segment to be

10 As of Windows NT 3.51 Service Pack 1, a small change was made to the slow start implementation. Instead of sending one TCP segment when starting
out, Windows NT TCP now sends two. This avoids the need to wait for the delayed ack timer to expire on the destination machine, which improves
performance for some applications.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 21

outstanding at a time without acknowledgment. If more small segments are generated
while awaiting the ack for the first one, then these segments are coalesced into one
larger segment. Any full-sized segment is always transmitted immediately, assuming
there is a sufficient receive window available. The Nagle algorithm is effective in
reducing the number of packets sent by interactive applications, such as telnet,
especially over slow links.

The Nagle algorithm can be observed in the following trace captured by Microsoft
Network Monitor. The trace was captured by using PPP to dial up an Internet provider
at 9600 BPS. A Telnet (character mode) session was established, then the “y” key was
held down on the Windows NT Workstation. At all times, one segment was sent, and
further “y” characters were held by the stack until an acknowledgment was received for
the previous segment. In this example, 3 to 4 “y” characters were saved up each time
and sent together in one segment. The Nagle algorithm resulted in a huge savings in the
number of packets sent–it was reduced by a factor of about three.
Time Source IP Dest IP Prot Description
0.644 204.182.66.83 199.181.164.4 TELNET To Server From Port = 1901
0.144 199.181.164.4 204.182.66.83 TELNET To Client With Port = 1901
0.000 204.182.66.83 199.181.164.4 TELNET To Server From Port = 1901
0.145 199.181.164.4 204.182.66.83 TELNET To Client With Port = 1901
0.000 204.182.66.83 199.181.164.4 TELNET To Server From Port = 1901
0.144 199.181.164.4 204.182.66.83 TELNET To Client With Port = 1901
...

Each segment contained several of the “y” characters. The first segment is shown more
fully parsed below, and the data portion is pointed out in the hex at the bottom.

Time Source IP Dest IP Prot Description
0.644 204.182.66.83 199.181.164.4 TELNET To Server From Port = 1901
+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xEA83; Proto = TCP; Len: 43
+ TCP: .AP..., len: 3, seq:1032660278, ack: 353339017, win: 7766, src:
 1901 dst: 23 (TELNET)
 TELNET: To Server From Port = 1901
 TELNET: Telnet Data
D2 41 53 48 00 00 52 41 53 48 00 00 08 00 45 00 .ASH..RASH....E.
00 2B EA 83 40 00 20 06 F5 85 CC B6 42 53 C7 B5 .+..@.BS..
A4 04 07 6D 00 17 3D 8D 25 36 15 0F 86 89 50 18 ...m..=.%6....P.
1E 56 1E 56 00 00 79 79 79 .V.V..yyy
 ^^^
 data
Windows Sockets applications can disable the Nagle algorithm for their connection(s)
by setting the TCP_NODELAY socket option. However, this practice should be
avoided unless absolutely necessary as it increases network utilization. Some network
applications may not perform well if their design does not take into account the effects
of transmitting large numbers of small packets and the Nagle algorithm.

Throughput Considerations
TCP was designed to provide optimum performance over varying link conditions.
Actual throughput for a link is dependent on a number of variables, but the most
important factors are:

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 22

n Link speed (bits/second that can be transmitted)
n Propagation delay
n Window size (amount of unacknowledged data that may be outstanding on a

TCP connection)
n Link reliability
n Router Congestion

TCP throughput calculation is discussed in detail in Chapters 20-24 of TCP/IP
Illustrated, by W. Richard Stevens. Some key considerations are listed below:

n The capacity of a pipe is (bandwidth * round-trip time). This is known as the
bandwidth-delay product. If the link is reliable, for best performance the
window size should be greater than or equal to the capacity of the pipe.
65535 is the largest window size that can be specified due to its 16-bit
field in the TCP header. RFC1323 describes a Window Scale option;
however it has not been implemented yet by Windows NT TCP.

n Throughput will never exceed (window size / round-trip time).
n If the link is unreliable (or badly congested) and packets are being dropped,

using a larger window size may not improve throughput.
n Propagation delay is dependent upon the speed of light and latencies in

transmission equipment and so on.
n Transmission delay depends on the speed of the media.
n For a given path, propagation delay is fixed, but transmission delay depends

upon the packet size.
n At low speeds, transmission delay is the limiting factor. At high speeds,

propagation delay may become the limiting factor.

To summarize, Windows NT TCP/IP will adapt to most network conditions and
dynamically provide the best throughput and reliability possible on a per-connection
basis. Attempts at manual tuning are often counter-productive unless a careful study of
data flow is performed by a qualified network engineer.

User Datagram Protocol (UDP)
UDP provides a connectionless, unreliable transport service. It is often used for one-to-
many communications, using broadcast or multicast IP datagrams. As delivery of UDP
datagrams is not guaranteed, applications using UDP must supply their own
mechanisms for reliability if needed. Microsoft networking uses UDP for logon,
browsing, and name resolution.

UDP and Name Resolution
UDP is used for NetBIOS name resolution via unicast to a NetBIOS name server or
subnet broadcasts, and for DNS (Domain Name System) hostname/IP address
resolution. NetBIOS name resolution is accomplished over UDP port 137. DNS queries
use UDP port 53. Since UDP itself does not guarantee delivery of datagrams, both of
these services use their own re-transmission schemes if they receive no answer to
queries. Broadcast UDP datagrams are not usually forwarded over IP routers, so
NetBIOS name resolution in a routed environment requires a nameserver of some type,
or the use of static database files.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 23

Mailslots over UDP
Mailslot messaging is used by many NetBIOS applications. A 2nd class mailslot is a
simple mechanism for sending a message from one NetBIOS name to another over
UDP. Mailslot messages may be broadcast on a subnet, or may be directed to the
remote system. In order to direct a mailslot message to another system, there must be
some method of NetBIOS name resolution available. Microsoft provides WINS
(Windows Internet Name Server) for this purpose.

NetBIOS over TCP/IP
The Windows NT implementation of NetBIOS over TCP/IP is referred to as “NetBT.”
NetBT uses the following TCP and UDP ports:

n UDP port 137 (name services)
n UDP port 138 (datagram services)
n TCP port 139 (session services)

NetBIOS over TCP/IP is specified by RFC1001 and RFC1002. The NETBT.SYS driver
is a kernel-mode component that supports the TDI interface. Services such as Windows
NT Workstation and Windows NT Server services use the TDI interface directly, while
traditional NetBIOS applications have their calls mapped to TDI calls via the
NETBIOS.SYS driver. Using TDI to make calls to NetBT is a more difficult
programming task, but can provide higher performance and freedom from historical
NetBIOS limitations. NetBIOS concepts are discussed further in the Network
Application Interfaces section of this document.

The Transport Driver Interface (TDI)
The Transport Driver Interface was developed by Microsoft to provide greater
flexibility and functionality than is provided by existing interfaces such as NetBIOS and
Windows Sockets. The TDI interface is exposed by all Windows NT transport
providers. The TDI interface specification describes the set of primitive functions by
which transport drivers and TDI clients communicate, and the call mechanisms used for
accessing them. Currently, the TDI Interface is kernel-mode only.

The Windows NT redirector and server both use TDI directly, rather than going through
the NetBIOS mapping layer. By doing so, they are not subject to many of the
restrictions imposed by NetBIOS, such as the 254 session limit.

TDI features
TDI may be the most difficult to use of all the Windows NT network APIs. It is a
simple conduit, so the programmer must determine the format and meaning of
messages. TDI includes the following features:

n Most Windows NT transports support TDI. (DLC does not.)
n An open naming/addressing scheme.
n Message and stream mode data transfer.
n Asynchronous operation.
n Support for unsolicited indication of events.
n It is extensible–clients can submit private requests to a transport driver that

understands them.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 24

n Support for limited use of standard kernel-mode I/O functions to send and
receive data.

n 32-bit addressing and values.
n Support for ACLs (Access Control Lists, used for security) on TDI address

objects.

More information on the TDI interface is available from the Windows NT Device
Driver Kit (DDK).

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 25

Network Application Interfaces

Overview
There are a number of ways that network applications can communicate using the
TCP/IP protocol stack. Some of them, such as named pipes, go through the network
redirector, which is part of the workstation service. Many older applications were
written to the NetBIOS interface, which is supported by NetBIOS over TCP/IP. The
Windows Sockets interface is currently popular. A quick overview of the Windows
Sockets Interface and the NetBIOS Interface is presented here.

Windows Sockets
Windows Sockets specifies a programming interface based on the familiar “socket”
interface from the University of California at Berkeley. It includes a set of extensions
designed to take advantage of the message-driven nature of Microsoft Windows.
Version 1.1 of the specification was released in January 1993, and version 2.0 is in a
provisional state at the time of this writing11. Currently, support for raw sockets is not
available, however it is planned for a future release.

Applications
There are many Windows Sockets applications available. A number of the utilities that
ship with Windows NT are Windows Sockets based, including the FTP and DHCP
clients and servers, telnet client, etc.

Name Resolution
Windows Sockets applications generally use the gethostbyname() call to resolve a
hostname to an IP address. The gethostbyname() call uses the following (default) name
lookup sequence:

n Check the hosts file for a matching name entry.
n If a Domain Name Server is configured, query it .
n If no match is found, try the NetBIOS name resolution sequence described in

Figure 3, up until the point at which DNS resolution is attempted.

Support for IP Multicasting
The Windows Sockets API has been extended to provide support for IP multicasting.
The extensions and the sample application party.exe illustrating usage are available
from ftp.microsoft.com. Multicasting is also described in the Windows Sockets 2.0
specification and in the IGMP section of this document.

Internet Protocol multicasting is currently supported only on AF_INET sockets of type
SOCK_DGRAM.

11 Both specifications are available from the Microsoft Internet site on www.microsoft.com and ftp.microsoft.com.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 26

The Backlog Parameter
Windows Sockets server applications generally create a socket and then use listen() to
listen on it for connection requests. One of the parameters passed when calling listen()
is the backlog of connection requests that the application would like Windows Sockets
to queue for it. The Windows Sockets 1.1 specification indicates that the maximum
allowable value for backlog is 5; however, Windows NT will accept a backlog of up to
100. The FTP server in version 3.51 was modified to allow configuration of the backlog
parameter by the administrator. FTP servers that are heavily used may benefit from
increasing the backlog to a larger number than the default of 5. See Appendix D for
details on this configuration setting.

NetBIOS Over TCP/IP
NetBIOS defines a software interface and a naming convention, not a protocol. Early
versions of Microsoft networking products provided only the NetBEUI local-area
networking protocol with a NetBIOS application programming interface. NetBEUI is a
small, fast protocol with no networking layer; thus, it is not routable and is often not
suitable for WAN implementations. NetBEUI relies on broadcasts for name resolution
and location of services. NetBIOS over TCP/IP provides the NetBIOS programming
interface over the TCP/IP protocol, extending the reach of NetBIOS client and server
programs to the WAN and providing interoperability with various other operating
systems.

NetBIOS Names
The NetBIOS namespace is flat, meaning that all names within a network must be
unique. NetBIOS names are 16 characters in length. Resources are identified by
NetBIOS names, that are registered dynamically when computers boot, services start, or
users log on. Names can be registered as unique (one owner) or as group (multiple
owner) names. A NetBIOS Name Query is used to locate a resource by resolving the
name to an IP address.

Microsoft networking components, such as Windows NT Workstation and Windows NT
Server services, allow the first 15 characters of a NetBIOS name to be specified by the
user or administrator, but reserve the 16th character of the NetBIOS name to indicate a
resource type (00-FF hex). Following are some example NetBIOS names used by
Microsoft components:

Unique Names

<computername>[00h] Workstation Service
<computername>[03h] Messenger Service
<computername>[06h] RAS Server Service
<computername>[1Fh]
<computername>[20h]
<computername>[21h] RAS Client Service
<computername>[BEh] Network Monitoring Agent
<computername>[BFh] Network Monitoring Utility
<username>[03] Messenger Service
<domain_name>[1Dh] Master Browser
<domain_name>[1Bh] Domain Master Browser

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 27

Group Names

<domain_name>[00h] Domain Name
<domain_name>[1Ch] Domain Controllers
<domain_name>[1Eh] Browser Service Elections

To see which names a computer has registered over NetBT, type nbtstat -n.

NetBIOS Name Registration and Resolution
Windows NT TCP/IP 3.5x systems may use several methods for locating NetBIOS
resources:

n NetBIOS name cache
n NetBIOS name server
n IP subnet broadcasts
n Static LMHOSTS files
n Static HOSTS files
n DNS servers

Earlier implementations used only cache, broadcasts, and LMHOSTS files; however, in
version 3.5, a NetBIOS name server (WINS) was added, and modifications were made
to allow NetBIOS applications to query the DNS namespace by appending configurable
domain suffixes to a NetBIOS name.

NetBIOS name resolution order depends upon the node type and system configuration.
The following node types are supported:

n B-node – uses broadcasts for name registration and resolution.
n P-node – uses a NetBIOS Name Server for name registration and resolution.
n M-node – uses broadcasts for name registration. For name resolution, tries

broadcasts first, but switches to p-node if no answer is received.
n H-node – uses NetBIOS name server for both registration and resolution;

however, if no name server can be located, it switches to b-node.
Continues to poll for nameserver and switches back to p-node when one
becomes available.

n Microsoft-enhanced – Local LMHOSTS files or WINS proxies plus Windows
Sockets gethostbyname() calls (using standard DNS and/or local HOSTS
files) in addition to standard node types.

The plethora of configurable options sometimes makes it difficult to determine what
name resolution methods to choose, and what name resolution order each configuration
will use. Prakash Narasimhamurthy of Microsoft Consulting Services provided the flow
charts shown in figures 3 and 4 to illustrate name resolution for the various node types.

n Microsoft ships a NetBIOS name server known as WINS (Windows Internet Name
Service12). Most WINS clients are set up as h-nodes, i.e., they first attempt to
register and resolve names using WINS, and if that fails they try local subnet
broadcasts. Using a name server to locate resources is generally preferable to
broadcasting, for two reasons:

n Broadcasts are not usually forwarded over routers.

n Broadcasts are received by all computers on a subnet, requiring processing
time at each one.

12 WINS is discussed in detail in a separate Windows NT Whitepaper (DHCPWINS.DOC, Part No. 098-56544) available on the Internet from
ftp.microsoft.com and from the Microsoft Sales Information Center.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 28

The Windows NT workstation service, server service, browser, messenger, and
netlogon services are all (direct) NetBT clients. They use the Transport Driver Interface
(described later in this whitepaper) to communicate with NetBT. Windows NT also
includes a NetBIOS emulator. The emulator takes standard NetBIOS requests from
NetBIOS applications and translates them to equivalent TDI primitives.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 29

Find Node Type

H-Node P-Node M-Node B-Node

NetBIOS Name
Cache

NetBIOS Name
Cache

NetBIOS Name
Cache

NetBIOS Name
Cache

Success Success Success Success

Query A WINS
Server

Query A WINS
Server

IP Address Returned IP Address Returned

Local Broadcast
For Resolution

Local Broadcast
For Resolution

Success

Success

Success Success

Local Broadcast
For Resolution

Query A WINS
Server

Success Success

IP Address Returned

No No No

Yes Yes Yes Yes

Yes Yes Yes Yes

Yes Yes

IP Address Returned

Yes Yes

Yes

IP Address Returned

Yes

No No

No No No No

No No No

No

1

START

Figure 3: NetBIOS Name Resolution Flowchart (part 1 of 2)

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 30

IP Address Returned

Check LMHOSTS File
"Enable LMHOSTS

Lookup" checked in the
NCPA

1

"Enable DNS for Windows
Name Resolution" checked in

the NCPA

Resolution Failure

Success

Resolution Failure

Check Local HOSTS File

Success

Query DNS Success

Yes

Yes

No

No

No

No

No

Yes

Yes

Yes

Source : Prakash Narasimhamurthy
Microsoft Consulting Services

Figure 4: NetBIOS Name Resolution (part 2 of 2)

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 31

NetBIOS Over TCP Sessions
NetBIOS sessions are established between two names. For instance, when a Windows
NT Workstation makes a file sharing connection to a server, the following sequence of
events takes place:

n The NetBIOS name for the server is resolved to an IP address.
n A TCP connection is established from the workstation to the server, using

port 139.
n The workstation sends a NetBIOS Session Request to the server name over

the TCP connection. Assuming the server is listening on that name, it will
respond affirmatively and a session is established.

Once the NetBIOS session has been established, the workstation and server negotiate a
higher level protocol to use over it. Microsoft networking uses only one NetBIOS
session between two names at any point in time. Any additional file or print sharing
connections made after the first one are multiplexed over that same NetBIOS session.

NetBIOS keepalives are used on each connection to verify that the server and
workstation are still both up and able to maintain their session. This way, if a
workstation is shut down ungracefully, the server will eventually clean up the
connection and associated resources, and vice versa. NetBIOS keepalives are controlled
by the SessionKeepAlive registry parameter and default to once per hour.

If LMHOSTS files are used and an entry is misspelled, it is possible to attempt to
connect to a server using the correct IP address but an incorrect name. In this case, a
TCP connection will still be established to the server. However, the NetBIOS session
request (using the wrong name) will be rejected by the server, as there is no listen
posted on that name. Error 51 “remote computer not listening” will be returned.

NetBIOS Datagram Services
Datagrams are sent from one NetBIOS name to another over UDP port 138. The
datagram service provides the ability to send a message to a unique name or to a group
name. Group names may resolve to a list of IP addresses, or a broadcast. For instance,
the command net send /d:mydomain test would send a datagram containing the text
“test” to the group name <mydomain>[03]. The <mydomain>[03] name would resolve
to an IP subnet broadcast, so the datagram would be sent with the following
characteristics:

n Destination MAC address: broadcast (FFFFFFFFFFFF).
n Source MAC address: The NIC address of the local computer.
n Destination IP address: The local subnet broadcast address.
n Source IP address: The IP address of the local computer.
n Destination name: <mydomain>[03] (the messenger service on the remote

computers).
n Source name: <localmachine>[03] (the messenger service on the local

computer).

All hosts on the subnet would pick up the datagram and process it at least to the UDP
protocol. On hosts running a NetBIOS datagram service, UDP would hand the datagram
to NetBT on port 138. NetBT would check the destination name to see if any
application had posted a datagram receive on it, and if so would pass the datagram up.
If no receive was posted, the datagram would be discarded.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 32

 Microsoft TCP/IP Client and Server Applications

Overview
This whitepaper is intended to provide an overview of the Windows NT 3.5x
implementation of the TCP/IP stack, not the many clients and services that are shipped
with the product or available from third parties. However, there are a few client and
server components that are critical to the configuration and operation of the protocol
suite, so an overview of them is presented here.

Dynamic Host Configuration Protocol (DHCP)
The DHCP client and server are Windows Sockets applications that are used to provide
automatic configuration of various TCP/IP protocol components13. The server is
configured with “scopes” that are ranges of IP addresses to hand out, along with
additional configuration parameters that go along with those addresses. For instance, a
scope might be set up for a range of IP addresses, and it might also include a default
gateway, DNS server, NetBIOS Name Server (WINS), etc.

Obtaining Configuration Parameters Using DHCP
When a DHCP-enabled client boots for the very first time, it broadcasts a DHCP
Discover request onto the local subnet. Any DHCP server that receives the request may
respond with a DHCP Offer that contains proposed configuration parameters. The client
can evaluate the offer, and respond with a DHCP Request to accept it. The server
finalizes the transaction with a DHCP Acknowledgment. A sample of this sequence is
explained below.

First, the DHCP Discover is sent as the stack initializes:

Time Source IP Dest IP Prot Description
0.000 0.0.0.0 255.255.255.255 DHCP Discover (xid=68256CA8)
+ FRAME: Base frame properties
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 + ETHERNET: Destination address : FFFFFFFFFFFF
 + ETHERNET: Source address : 00DD01075715
 ETHERNET: Frame Length : 342 (0x0156)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 328
 (0x0148)
 IP: ID = 0x0; Proto = UDP; Len: 328
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 328 (0x148)
 IP: Identification = 0 (0x0)
 + IP: Flags Summary = 0 (0x0)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 32 (0x20)
 IP: Protocol = UDP - User Datagram
 IP: CheckSum = 0x99A6

13 DHCP is described in more detail in RFC1541, and RFC1542, and in a separate whitepaper from Microsoft (Part No. 098-56544). The Microsoft client
and server implementations were tested with preliminary clients and servers from many other vendors at DHCP “Bakeoff” events and should interoperate
successfully with any other compliant implementations.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 33

 IP: Source Address = 0.0.0.0
 IP: Destination Address = 255.255.255.255
 IP: Data: Number of data bytes remaining = 308 (0x0134)
 UDP: IP Multicast: Src Port: BOOTP Client, (68); Dst Port: BOOTP
 Server (67); Length = 308 (0x134)
 UDP: Source Port = BOOTP Client
 UDP: Destination Port = BOOTP Server
 UDP: Total length = 308 (0x134) bytes
 UDP: CheckSum = 0x4A0E
 UDP: Data: Number of data bytes remaining = 300 (0x012C)
 DHCP: Discover (xid=68256CA8)
 DHCP: Op Code (op) = 1 (0x1)
 DHCP: Hardware Type (htype) = 1 (0x1) 10Mb Ethernet
 DHCP: Hardware Address Length (hlen) = 6 (0x6)
 DHCP: Hops (hops) = 0 (0x0)
 DHCP: Transaction ID (xid) = 1747283112 (0x68256CA8)
 DHCP: Seconds (secs) = 0 (0x0)
 DHCP: Flags (flags) = 0 (0x0)
 DHCP: 0............... = No Broadcast
 DHCP: Client IP Address (ciaddr) = 0.0.0.0
 DHCP: Your IP Address (yiaddr) = 0.0.0.0
 DHCP: Server IP Address (siaddr) = 0.0.0.0
 DHCP: Relay IP Address (giaddr) = 0.0.0.0
 DHCP: Client Ethernet Address (chaddr) = 00DD01075715
 DHCP: Server Host Name (sname) = <Blank>
 DHCP: Boot File Name (file) = <Blank>
 DHCP: Magic Cookie = [OK]
 DHCP: Option Field (options)
 DHCP: DHCP Message Type = DHCP Discover
 DHCP: Client-identifier = (Type: 1) 00 dd 01 07 57 15
 DHCP: Host Name = DAVEMAC4
 DHCP: End of this option field

There are several interesting points to note in the DHCP discover packet. First, it is sent
as a broadcast at both the link layer and the IP layer. Second, the DHCP broadcast flag
is set to 0, indicating that the client is capable of receiving a response that is directed to
its MAC address (indicated by chaddr). This means that the DHCP server is not
required to broadcast the response14. Finally, note that there is a transaction ID (XID)
used to track each configuration sequence. Any response to this discover packet should
reference the same XID.

A DHCP offer follows:

Time Source IP Dest IP Prot Description
0.165 199.199.41.254 199.199.40.13 DHCP Offer (xid=68256CA8)
+ FRAME: Base frame properties
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 + ETHERNET: Destination address : 00DD01075715
 + ETHERNET: Source address : 00000C1AEBC5
 ETHERNET: Frame Length : 590 (0x024E)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 576
 (0x0240)
 IP: ID = 0x906; Proto = UDP; Len: 576
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 + IP: Service Type = 0 (0x0)
 IP: Total Length = 576 (0x240)
 IP: Identification = 2310 (0x906)
 + IP: Flags Summary = 0 (0x0)
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 31 (0x1F)
 IP: Protocol = UDP - User Datagram
 IP: CheckSum = 0xAF0D

14 Setting this flag to 0 is new in Windows NT 3.51; version 3.5 systems required a broadcast response.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 34

 IP: Source Address = 199.199.41.254
 IP: Destination Address = 199.199.40.13
 IP: Data: Number of data bytes remaining = 556 (0x022C)
 UDP: Src Port: BOOTP Server, (67); Dst Port: BOOTP Client (68); Length
 = 556 (0x22C)
 DHCP: Offer (xid=68256CA8)
 DHCP: Op Code (op) = 2 (0x2)
 DHCP: Hardware Type (htype) = 1 (0x1) 10Mb Ethernet
 DHCP: Hardware Address Length (hlen) = 6 (0x6)
 DHCP: Hops (hops) = 0 (0x0)
 DHCP: Transaction ID (xid) = 1747283112 (0x68256CA8)
 DHCP: Seconds (secs) = 0 (0x0)
 DHCP: Flags (flags) = 0 (0x0)
 DHCP: 0............... = No Broadcast
 DHCP: Client IP Address (ciaddr) = 0.0.0.0
 DHCP: Your IP Address (yiaddr) = 199.199.40.13
 DHCP: Server IP Address (siaddr) = 0.0.0.0
 DHCP: Relay IP Address (giaddr) = 199.199.40.1
 DHCP: Client Ethernet Address (chaddr) = 00DD01075715
 DHCP: Server Host Name (sname) = <Blank>
 DHCP: Boot File Name (file) = <Blank>
 DHCP: Magic Cookie = [OK]
 DHCP: Option Field (options)
 DHCP: DHCP Message Type = DHCP Offer
 DHCP: Subnet Mask = 255.255.255.0
 DHCP: Renewal Time Value (T1) = 1 Days, 12:00:00
 DHCP: Rebinding Time Value (T2) = 2 Days, 15:00:00
 DHCP: IP Address Lease Time = 3 Days, 0:00:00
 DHCP: Server Identifier = 199.199.41.254
 DHCP: End of this option field

The DHCP offer is also interesting. The XID is the same as that in the discover packet.
It is a directed offer, not sent as a broadcast, and it is directed to the MAC address of
the client, and to the proposed IP address for the client. The source address is from a
different subnet (199.199.41) than the subnet that the client is attached to, indicating
that both the discover and the offer must have traversed a router. This can be verified
by checking the DHCP “giaddr” field, that is set to 199.199.40.1. As you might suspect,
a router is configured to forward DHCP broadcasts from this subnet to the one where
the DHCP server is located. DHCP forwarding is discussed in RFC1542, and routers
used for this purpose must explicitly support the RFC and be configured accordingly 15.

Next, the client accepts the offer:

**
Time Source IP Dest IP Prot Description
0.172 0.0.0.0 255.255.255.255 DHCP Request (xid=08186BD1)
+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x100; Proto = UDP; Len: 328
+ UDP: IP Multicast: Src Port: BOOTP Client, (68); Dst Port: BOOTP
 Server (67); Length = 308 (0x134)
 DHCP: Request (xid=08186BD1)
 DHCP: Op Code (op) = 1 (0x1)
 DHCP: Hardware Type (htype) = 1 (0x1) 10Mb Ethernet
 DHCP: Hardware Address Length (hlen) = 6 (0x6)
 DHCP: Hops (hops) = 0 (0x0)
 DHCP: Transaction ID (xid) = 135818193 (0x8186BD1)
 DHCP: Seconds (secs) = 0 (0x0)
 DHCP: Flags (flags) = 0 (0x0)
 DHCP: 0............... = No Broadcast
 DHCP: Client IP Address (ciaddr) = 0.0.0.0
 DHCP: Your IP Address (yiaddr) = 0.0.0.0
 DHCP: Server IP Address (siaddr) = 0.0.0.0
 DHCP: Relay IP Address (giaddr) = 0.0.0.0
 DHCP: Client Ethernet Address (chaddr) = 00DD01075715

15 Although BOOTP and DHCP are similar, the Microsoft DHCP server does not support BOOTP. It will silently ignore BOOTP requests.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 35

 DHCP: Server Host Name (sname) = <Blank>
 DHCP: Boot File Name (file) = <Blank>
 DHCP: Magic Cookie = [OK]
 DHCP: Option Field (options)
 DHCP: DHCP Message Type = DHCP Request
 DHCP: Client-identifier = (Type: 1) 00 dd 01 07 57 15
 DHCP: Requested Address = 199.199.40.13
 DHCP: Server Identifier = 199.199.41.254
 DHCP: Host Name = DAVEMAC4
 DHCP: Parameter Request List = (Length: 7) 01 0f 03 2c 2e 2f 06
 DHCP: End of this option field
The request was again broadcast, and the proposed IP address from the server is
referenced. The request is broadcast for a reason–the client could have received more
than one offer and, by broadcasting its request, it allows the other DHCP servers to see
that it isn’t going to use their offers.

Finally, the client acknowledges that it will accept the lease:

**
Time Source IP Dest IP Prot Description
0.061 199.199.41.254 199.199.40.13 DHCP ACK (xid=08186BD1)
+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0xA06; Proto = UDP; Len: 576
+ UDP: Src Port: BOOTP Server, (67); Dst Port: BOOTP Client (68);
 Length = 556 (0x22C)
 DHCP: ACK (xid=08186BD1)
 DHCP: Op Code (op) = 2 (0x2)
 DHCP: Hardware Type (htype) = 1 (0x1) 10Mb Ethernet
 DHCP: Hardware Address Length (hlen) = 6 (0x6)
 DHCP: Hops (hops) = 0 (0x0)
 DHCP: Transaction ID (xid) = 135818193 (0x8186BD1)
 DHCP: Seconds (secs) = 0 (0x0)
 DHCP: Flags (flags) = 0 (0x0)
 DHCP: 0............... = No Broadcast
 DHCP: Client IP Address (ciaddr) = 0.0.0.0
 DHCP: Your IP Address (yiaddr) = 199.199.40.13
 DHCP: Server IP Address (siaddr) = 0.0.0.0
 DHCP: Relay IP Address (giaddr) = 199.199.40.1
 DHCP: Client Ethernet Address (chaddr) = 00DD01075715
 DHCP: Server Host Name (sname) = <Blank>
 DHCP: Boot File Name (file) = <Blank>
 DHCP: Magic Cookie = [OK]
 DHCP: Option Field (options)
 DHCP: DHCP Message Type = DHCP ACK
 DHCP: Renewal Time Value (T1) = 1 Days, 12:00:00
 DHCP: Rebinding Time Value (T2) = 2 Days, 15:00:00
 DHCP: IP Address Lease Time = 3 Days, 0:00:00
 DHCP: Server Identifier = 199.199.41.254
 DHCP: Subnet Mask = 255.255.255.0
 DHCP: Domain Name = (Length: 22) 63 73 77 61 74 63 70 2e 6d
 69 63 72 6f 73 6f 66 ...
 DHCP: Router = 199.199.40.1
 DHCP: NetBIOS Name Service = 199.199.41.254
 DHCP: NetBIOS Node Type = (Length: 1) 08
 DHCP: End of this option field

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 36

The acknowledgment is the final packet of the transaction, and it contains all of the
configuration parameters that the client will use.

Lease Expiration and Renewal
DHCP-supplied configurations are “leased” from the server. Periodically, the client will
contact the server to renew the lease. The protocol and implementation are very robust
and configurable and short-term server or network outages do not generally affect lease
renewal. For instance, DHCP clients start to try to renew their lease when 50% of the
lease time has expired. Repeated attempts are made to contact the DHCP server and
renew the lease, until 87.5% of the lease time has expired. At this point, the client
attempts to get a new lease from any available DHCP server.

When a DHCP client is rebooted, it attempts to verify that the lease it holds is valid for
the current subnet. If it is moved to another subnet and rebooted, the following
sequence takes place:

Source MAC Dest MAC Source IP Dest IP Pro Description
davemacp *BROADCAST 0.0.0.0 255.255.255.255 DHCP Request (xid=6E3A2E74)
router *BROADCAST 10.57.8.1 255.255.255.255 DHCP NACK (xid=6E3A2E74)
davemacp *BROADCAST 0.0.0.0 255.255.255.255 DHCP Discover (xid=51CA7FED)
router davemacp 10.57.8.1 10.57.13.152 DHCP Offer (xid=51CA7FED)
davemacp *BROADCAST 0.0.0.0 255.255.255.255 DHCP Request (xid=2081237D)
router davemacp 10.57.8.1 10.57.13.152 DHCP ACK (xid=2081237D)

In this example the portable computer “davemacp” was moved to a new subnet and re-
started. It broadcasted a DHCP request for renewal of its old parameters, but the DHCP
server responsible for the new subnet recognized that these were invalid for the subnet
and NAK’d them. The DHCP client software automatically went through a normal
discovery process to get reconfigured with parameters that are valid for the new
location.

Windows Internet Name Service (WINS)
WINS is a NetBIOS name service as described in RFC1001/RFC100216. When a
Windows NT system is configured as an h-node (default for WINS clients), it attempts
to use a WINS server for name registration and resolution first and, if that fails, it
resorts to subnet broadcasts.

WINS Name Registration and Resolution
Using WINS for name services dramatically reduces the number of IP broadcasts used
by Microsoft network clients. The trace snippet below illustrates name registration and
resolution traffic caused by booting a Windows NT 3.51 workstation.

Source IP Dest IP Prot Description
199.199.40.124 199.199.41.254 NBT NS: MultiHomed Name Registration req. for DAVEMAC4<00>
199.199.41.254 199.199.40.124 NBT NS: Registration resp. for DAVEMAC4<00>, Success
199.199.40.124 199.199.41.254 NBT NS: Registration req. for DAVEMACD<00>
199.199.41.254 199.199.40.124 NBT NS: Registration resp. for DAVEMACD<00>, Success
199.199.40.124 199.199.41.254 NBT NS: Query req. for DAVEMACD<1C>
199.199.41.254 199.199.40.124 NBT NS: Query resp. for DAVEMACD<1C>, Success
199.199.40.124 199.199.41.254 NBT NS: MultiHomed Name Registration req. for DAVEMAC4<03>
199.199.41.254 199.199.40.124 NBT NS: Registration resp. for DAVEMAC4<03>, Success

16 The Microsoft WINS server is discussed in more detail in a separate whitepaper (Part No. 098-56544).

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 37

This trace shows that the booting client (199.199.40.124) sends a single name
registration request to the WINS server, asking to register the computer name
(DAVEMAC4<00>) as a unique name for a multi-homed host. The WINS server
responds affirmatively. Next, the domain name (DAVEMACD<00>) is registered as a
group name. Then a name query is sent to the WINS server, requesting a list of domain
controllers (who all register the <domain>[1C] name) so that a logon server can be
contacted. One more registration is shown, for DAVEMAC4<03>, which is the name
registered by the messenger service. The fully parsed version of the domain name
registration is shown below.

Source IP Dest IP Prot Description
199.199.40.124 199.199.41.254 NBT NS: Registration req. for
DAVEMACD<00>
+ FRAME: Base frame properties
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x300; Proto = UDP; Len: 96
+ UDP: Src Port: NETBIOS Name Service, (137); Dst Port: NETBIOS Name
 Service (137); Length = 76 (0x4C)
 NBT: NS: Registration req. for DAVEMACD<00>
 NBT: Transaction ID = 32770 (0x8002)
 NBT: Flags Summary = 0x2900 - Req.; Registration; Success
 NBT: 0............... = Request
 NBT: .0101........... = Registration
 NBT:0.......... = Non-authoritative Answer
 NBT:0......... = Datagram not truncated
 NBT:1........ = Recursion desired
 NBT:0....... = Recursion not available
 NBT:0...... = Reserved
 NBT:0..... = Reserved
 NBT:0.... = Not a broadcast packet
 NBT:0000 = Success
 NBT: Question Count = 1 (0x1)
 NBT: Answer Count = 0 (0x0)
 NBT: Name Service Count = 0 (0x0)
 NBT: Additional Record Count = 1 (0x1)
 NBT: Question Name = DAVEMACD<00>
 NBT: Question Type = General Name Service
 NBT: Question Class = Internet Class
 NBT: Resource Record Name = DAVEMACD<00>
 NBT: Resource Record Type = NetBIOS General Name Service
 NBT: Resource Record Class = Internet Class
 NBT: Time To Live = 300000 (0x493E0)
 NBT: RDATA Length = 6 (0x6)
 NBT: Resource Record Flags = 57344 (0xE000)
 NBT: 1............... = Group NetBIOS Name
 NBT: .11............. = Reserved
 NBT: ...0000000000000 = Reserved
 NBT: Owner IP Address = 199.199.40.13
Since the domain name is a group name, any number of hosts are allowed to register it.

WINS in a DHCP Environment
WINS is especially helpful on DHCP-enabled networks. One of the DHCP-provided
parameters can be the address of a WINS server, so as soon as the client is configured
by DHCP, it registers its name(s) and address with the WINS server, and can then be
easily located by the other computers on the network. This combination of DHCP and
WINS is ideal for dynamic situations.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 38

Domain Name System (DNS)
Microsoft included a Beta version of a DNS server for Windows NT 3.5 in the
Windows NT 3.5 resource kit, and one for Windows NT 3.51 in the Windows NT 3.51
resource kit17. These versions of the DNS have an interesting feature partial integration
of WINS and DNS namespaces.

Integration of the DNS and WINS
The DNS can be configured with a special “$WINS” directive, that instructs it to pass
through to a WINS server queries for names that can’t be found in the DNS database.
The algorithm for passing through queries is:

n Attempt to resolve the name to an IP address using standard DNS records.

n If that fails, the domain suffix is stripped off, and a NetBIOS name is formed
by space padding the hostname and appending 0x00 as the 16th
character. The WINS server configured for the host running the DNS
software is then sent a standard NetBIOS name query for that name.

n The WINS server returns a Name Query Response, and if it was successful
the DNS returns a standard DNS response to the original client using the
information obtained from WINS.

The following example is presented to clarify this:

n Host “A” sends a DNS query for beetle.microsoft.com to the DNS.

n The DNS checks its records and finds no match.

n The DNS sends a NetBIOS Name Query to its WINS server for
“BEETLE<00>“ (BEETLE followed by 9 spaces and hex 00).

n The WINS server locates the (dynamically registered) IP address for
BEETLE and returns it to the DNS in a NetBIOS Name Query Response.

n The DNS returns the resource record to Host “A” as a DNS response.

Since WINS is a dynamic name service, this feature extends the DNS and can provide
relief from some of the manual labor normally associated with DNS administration.

The Browser
The browser was originally designed to be a simple workgroup enumeration tool, but
has been enhanced significantly over time. As of Windows NT 3.5, the browser is
WAN-aware and can be used to provide configuration-free enumeration of resources
that are anywhere in an IP internetwork. The Windows NT Resource Kit Networking
Guide contains an overview of the browser, but a few key concepts related to WAN
browsing are discussed here.

Master Browser Elections
A Master Browser is elected on each subnet with Microsoft networking computers
present. In addition, the PDC for a domain always functions as the Domain Master
Browser, which is responsible for replicating the browse lists amongst all Master
Browsers within the domain. Each domain has one Master Browser per subnet that it

17 For information on the latest DNS builds, mail “dnsbeta@microsoft.com”.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 39

has member computers on, listening for server announcements from Windows NT-
based, Windows for Workgroups-based, and Lan Manager-based systems. It maintains
lists of available resources that can be requested by client computers.

As the number of hosts on a subnet grows, the Master Browser will start to replicate the
browse list to Backup Browsers. If the master is shut down, an election takes place to
determine the new Master Browser. Existing Backup Browsers have an advantage in the
election. For this process, workgroups and domains function alike, except that all
Windows NT Servers are either a Master Browser or Backup Browser, and Windows
NT Workstation and Windows for Workgroups computers aren’t allowed to become
backups or masters unless specifically configured.

Master Browser elections take place over the special <domain>[1E] NetBIOS name
using subnet broadcasts (without using WINS). The election is fully automatic and
takes into consideration a number of heuristics: operating system, version number,
uptime, role (Workstation, Backup Domain Controller, Primary Domain Controller),
etc. In general, the most robust system on the network wins. Elections are forced when:

n A client cannot find its master browser at startup.

n A client detects that a master browser has disappeared.

n A Windows NT Server initializes.

Maintaining Browse Lists
File servers periodically (once every 12 minutes) announce their presence to the special
<domain>[1D] NetBIOS name in an IP subnet broadcast. The Master Browser builds a
list from these broadcasts. In addition, all Master Browsers register a group name \
0x01\0x02__MSBROWSE__\0x02\0x01on the local subnet (not with WINS).
Periodically the Master Browsers in the domains and workgroups announce their
presence to this special name. Thus, in addition to the workgroup or domain
membership lists, Master Browsers also maintain lists of other domains with their
associated Master Browsers.

Requesting Browse Lists
When a browse request is made from a client, a “GetBackupListRequest” is sent to the
<domain>[1D] name (the Master Browser) that returns a list of browser servers for the
local subnet. The “GetBackupListRequest” is also unicast to the Domain Master
Browser, which handles the case in which the queried domain has no members on the
subnet. The client browser service selects three of the browsers from the list and stores
them for future use. Then when further browsing is done, (via the NetServerEnum API)
one of the three saved names is contacted by the client.

When a client queries its workgroup or domain browser, it first gets back a list of all of
the domains and workgroups that the browser has learned about through the \
0x01\0x02__MSBROWSE__\0x02\0x01 name as well as the name of the master
browser for each. When the user expands a domain or workgroup into a membership
list, the client sends a request to <domain>[1D] to get to the list (this is translated to a
local subnet broadcast by wins). If this fails, it contacts the master browser for the
particular domain or workgroup and fetches the membership list.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 40

The Domain Master Browser
As mentioned earlier, the PDC always acts as the Domain Master Browser. Since each
locally-elected Master Browser will only hear local membership announcements, there
needs to be a mechanism to consolidate all of the members into a single list. This is the
role of the Domain Master Browser. Periodically, all of the locally-elected Master
Browsers contact the PDC and replicate their membership lists to it. The PDC merges
the list with the "master" list for the whole domain and replicates the master list back
down. The replication algorithm is smart in that the local Master Browsers only
replicate the members that they have learned about locally to the domain master. This
whole mechanism allows members in a domain to span subnets and for all clients
(eventually) to be able to get complete membership lists.

On WINS-enabled networks, the browser code in NT 3.5x periodically connects to
WINS and learns all of the systems that have registered any <domain>[1B] name. The
browser then does a GetDCName() on each of the <domain>[1B]names (followed by an
attempt on <domain>[1C]) and adds the <domain name> <master browser name> to its
domain/workgroup list. This allows members of one domain to locate the master
browser for another domain even when it is on another subnet and the two domains
have no “broadcast area” in common.

Browser Enhancements
Browser code for Windows for Workgroups computers has been enhanced several times
over the past year to reduce the dependency on having a BDC per subnet. The updated
files are included on Windows NT Server 3.5 and 3.51 CDs under the \clients\wfw
directory, and are available from ftp.microsoft.com. Windows 95 systems also contain
enhanced browsing code.

Windows NT Workstation and Windows NT Server
Services
The workstation and server services are used for file and print sharing. Both use
NetBIOS over TCP/IP to communicate with each other; however, they are not NetBIOS
applications . . . they are written to talk directly to NetBT over the TDI interface. Being
direct TDI clients, they are high performance and not subject to limitations of the
NetBIOS interface, such as the 254 session limit. The Server Message Block (SMB)
protocol is used to send commands and responses between clients and servers. Public
SMB specifications are available from ftp.microsoft.com.

Logging On
When a user logs on to a Windows NT domain, a name query is sent to the NetBIOS
<domain>[1C] name. All domain controllers register this name on the network,
typically with the WINS database. If the client logging on is WINS-enabled, then the
name query is unicast to its WINS server, which responds with a list of IP addresses for
up to 25 domain controllers. The logon process selects one of the addresses from the list
and uses it to authenticate the user. All password information is encrypted before being
transmitted on the network.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 41

Connecting to Network Resources
When a workstation attempts to connect to a shared resource on the network, the
resource is “called” by NetBIOS name. The address resolution is accomplished as
illustrated in figures 3 and 4 in the NetBIOS section of this document. Once the IP
address of the target host is known, a standard TCP/IP connection is set up, and a
NetBIOS session is established over that connection18. The user is authenticated
using encrypted passwords, and then client/server messages are exchanged using
the SMB protocol. The workstation and server use sophisticated caching
mechanisms to reduce network traffic and provide high performance. When
WINS is used there is no reliance on IP broadcasts, with the single exception of
ARPs.

Optimizations
The Windows NT Workstation and Windows NT Server services were designed with
many optimizations to minimize network traffic and maximize throughput. The network
redirector works closely with the Windows NT Cache Manager to provide read-ahead
caching, write-behind caching, and search caching. Various file locking schemes, such
as opportunistic locking and local file lock optimization, help to reduce network traffic.
The SMB protocol used supports compound commands and responses, such as
LockAndRead and WriteAndUnlock.

Microsoft Remote Access PPP/SLIP Support
Windows NT 3.5x Remote Access Server (RAS) includes client and server support for
Point-to-Point Protocol (PPP), and client-only support for Serial Line IP (SLIP)19.
Microsoft recommends that you use PPP because of its flexibility and its role as an
industry standard, and for future flexibility with client and server hardware and
software. In addition, Microsoft RAS servers can act as NetBIOS gateways for clients
that dial in using the proprietary RAS protocol and NetBEUI, providing access to
NetBIOS resources over NetBEUI, IPX, or TCP/IP. Windows NT server RAS supports
up to 256 simultaneous remote clients, and Windows NT Workstation RAS supports
only one remote client at a time.

RAS Servers
RAS servers act as a “proxy” for their remote TCP/IP clients on the network that they
are attached to. They use proxy ARP to respond to ARP requests for their clients, and
set up host routes to each of their clients from the network. RAS servers can obtain
configuration parameters for their clients from a DHCP server, and then use PPP IPCP
(Internet Protocol Control Protocol) as defined in RFC1332 to configure their clients
with these parameters dynamically over the RAS link20.

18 NOTE: Since there are several non-broadcast options for NetBIOS name resolution, the Workstation and Server services can be used over any IP network
such as the Internet. You can connect to the \\ftp\data public share on ftp.microsoft.com from another Windows NT system on the Internet with file manager
by using the following lmhosts entry:
198.105.232.1 ftp #PRE
19 RAS is discussed in more detail in a separate whitepaper, Part No. 098-57330.
20 When a RAS server is configured to use DHCP to obtain TCP/IP configuration parameters for its clients, a pool of leased addresses is obtained from the
DHCP server, maintained in the registry, and managed locally by the RAS server. If more addresses are needed, or leases need to be renewed, the RAS
server will contact the DHCP server; however it does not check with the DHCP server each time a client dials in. If the RAS server is moved to another
subnet, it may have a pool of leases that are not valid for the new subnet still stored in the registry until they expire. See KnowledgeBase Article Q124358
for details on manually removing these leases.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 42

RAS Clients
RAS clients using TCP/IP may be configured to use the default gateway on the remote
network while they are connected to a PPP server. If so, then this default gateway
overrides any default gateway that is configured for local networks while the RAS
connection is established. The override is accomplished by manipulating the IP route
table. Any local routes, including the default gateway, get their metric (hop count)
incremented by one, and a default route with a metric of 1 hop is dynamically added for
the duration of the connection. One-hop routes are also added for the IP multicast
address (224.0.0.0), for the local WAN interface, and for the network that the PPP
server is attached to. This can present a problem with connecting to resources via the
local network default gateway, unless static routes are added at the client. Sample route
tables for a Windows NT workstation before and after connecting to a remote network
using PPP are shown below:

Route table before dialing a PPP Internet provider:
Network Address Netmask Gateway Address Interface Metric
0.0.0.0 0.0.0.0 199.199.40.1 199.199.40.11 1
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
199.199.40.0 255.255.255.0 199.199.40.11 199.199.40.11 1
199.199.40.11 255.255.255.255 127.0.0.1 127.0.0.1 1
199.199.40.255 255.255.255.255 199.199.40.11 199.199.40.11 1
224.0.0.0 224.0.0.0 199.199.40.11 199.199.40.11 1
255.255.255.255 255.255.255.255 199.199.40.11 199.199.40.11 1
Route table after dialing a PPP Internet provider:
Network Address Netmask Gateway Address Interface Metric
0.0.0.0 0.0.0.0 199.199.40.1 199.199.40.11 2
0.0.0.0 0.0.0.0 204.182.66.83 204.182.66.83 1
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
199.199.40.0 255.255.255.0 199.199.40.11 199.199.40.11 2
199.199.40.11 255.255.255.255 127.0.0.1 127.0.0.1 1
199.199.40.255 255.255.255.255 199.199.40.11 199.199.40.11 1
204.182.66.0 255.255.255.0 204.182.66.83 204.182.66.83 1
204.182.66.83 255.255.255.255 127.0.0.1 127.0.0.1 1
224.0.0.0 224.0.0.0 204.182.66.83 204.182.66.83 1
224.0.0.0 224.0.0.0 199.199.40.11 199.199.40.11 1
255.255.255.255 255.255.255.255 199.199.40.11 199.199.40.11 1

Using RAS To Route Between Networks
RAS was primarily designed to allow individual network clients to gain access to
services on a remote network, not to link networks together. However, in some
applications it is possible to use a RAS server to link a small network to a larger one,
such as the Internet. See KnowledgeBase article Q121877 for configuration details.
Routing support for RAS in more complex networks will be greatly improved when RIP
becomes available from Microsoft. Currently RIP is available as a public Beta from
ftp.microsoft.com.

Bandwidth Considerations
By default, RAS utilizes effective compression methods to increase the amount of data
that may be pumped over a serial link. When designing and installing systems and
services using RAS, it is important to do bandwidth planning. As a rule of thumb,
transfer rates can be estimated using the 10-bit byte to allow for protocol and timing
overhead. For instance, 9600 BPS (without compression) is approximately 1

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 43

Kbyte/second, 60Kbytes/minute, and 3.5Mbytes/hour. If the data being transferred
compresses fairly well, 5-8 Mbytes per hour throughput might be expected. While this
may be an adequate rate for a single workstation, it probably is not feasible as an inter-
site link for most applications. ISDN (128Kbits/second or 45 Mbytes/hour, not
including compression) might be more realistic. ISDN service in the United States has
become more available and economical in the past year.

Simple Network Management Protocol (SNMP) Agent
The SNMP agent in Windows NT provides some programmatic access to the TCP/IP
protocol stack. The Windows NT Software Development Kit (SDK) includes the
Microsoft Windows NT SNMP Programmers Reference document. There is a MIB
compiler (MIBCC.EXE) included in the Windows NT Resource Kit, and the Microsoft
KnowledgeBase contains at least one article describing its usage. The resource kit also
contains mib_ii.mib, lmmib2.mib, and smi.mib.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 44

 TCP/IP Troubleshooting Tools and Strategies

Overview
Many excellent network troubleshooting tools are available for Windows NT. Most are
included in the product or the Windows NT Resource Kit. The binaries from the
Resource Kit are available at no charge from the Microsoft Internet site. Microsoft
Network Monitor is an excellent network tracing tool that is included in the Microsoft
Systems Management Server product.

When troubleshooting any problem, it’s helpful to use a logical approach. Some
questions to ask are:

n What does work?

n What doesn’t work?

n How are the things that do and don’t work related?

n Have the things that don’t work ever worked on this computer/network?

n If so, what has changed since it last worked?

Troubleshooting a problem “from the bottom up” is often a good way to quickly isolate
it. The tools listed below are organized in this manner.

IPConfig
IPConfig is a command-line utility that prints out the TCP/IP-related configuration of a
host21. When used with the /all switch, it produces a detailed configuration report for all
interfaces, including any configured serial ports (RAS). Output may be redirected to a
file and pasted into other documents as shown below:
Windows NT IP Configuration
 Host Name : davemac1.microsoft.com
 DNS Servers :
 Node Type : Hybrid
 NetBIOS Scope ID. :
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No
 NetBIOS Resolution Uses DNS : No
Ethernet adapter Elnk31:
 Description : ELNK3 Ethernet Adapter.
 Physical Address. : 00-20-AF-1D-2B-91
 DHCP Enabled. : Yes
 IP Address. : 10.57.9.138
 Subnet Mask : 255.255.248.0
 Default Gateway : 10.57.8.1
 DHCP Server : 10.54.16.157
 Primary WINS Server : 10.54.16.157
 Secondary WINS Server . . . : 10.54.16.159
 Lease Obtained. : Sunday, June 25, 1995 11:43:01
 PM
 Lease Expires : Wednesday, June 28, 1995
 11:43:01 PM
Ethernet adapter NdisWan5:
 Description :

21 NOTE: Windows 95 TCP/IP includes WINIPCFG in place of IPCONFIG.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 45

 Physical Address. : 00-00-00-00-00-00
 DHCP Enabled. : No
 IP Address. : 0.0.0.0
 Subnet Mask : 0.0.0.0
 Default Gateway :

Ping
Ping is a tool that helps to verify IP-level connectivity. When troubleshooting, the ping
command is used to send an ICMP echo request to a target name or IP address. First try
pinging the IP address of the target host to see if it will respond, as this is the simplest
case. If that succeeds, then try pinging the name. Ping uses Windows Sockets-style
name resolution to resolve the name to an address, so if pinging by address succeeds,
but by name fails, then the problem lies in address resolution, not network connectivity.
Type ping -? to see what command-line options are available. For example, ping allows
you to specify the size of packets to use, how many to send, whether to record the route
used, what TTL value to use, and whether to set the “don’t fragment” flag. See the
PMTU discovery section of this document for details on using ping to manually
determine the PMTU between two computers.

The following example illustrates how to send two pings, each 1450 bytes in size, to
address 10.57.13.152:

C:\>ping -n 2 -l 1450 10.57.13.152
Pinging 10.57.13.152 with 1450 bytes of data:
Reply from 10.57.13.152: bytes=1450 time=10ms TTL=32
Reply from 10.57.13.152: bytes=1450 time=10ms TTL=32

By default, ping only waits 750ms for each response to be returned before timing out. If
the remote system being pinged is across a high-delay link such as a satellite link,
responses could take longer to be returned. The -w (wait) switch can be used to specify
a longer timeout.

ARP
The ARP command is useful for viewing the ARP cache. If two hosts on the same
subnet cannot even ping each other successfully, try running the arp -a command on
each computer to see if they have the correct MAC addresses listed for each other. You
can determine a host’s MAC address using IPConfig. If another host with a duplicate IP
address exists on the network, the ARP cache may have had the MAC address for the
other computer placed in it. Arp -d can be used to delete an entry that may be incorrect.
Entries can be added using arp -s.

Tracert
Tracert is a route tracing utility. Tracert uses the IP TTL field and ICMP error
messages to determine the route from one host to another through a network. Sample
output from the tracert command is shown in the ICMP section of this document.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 46

Route
Route is used to view or modify the route table. Route print displays a list of current
routes known by IP for the host. Sample output is shown in the IP section of this
document. Route add is used to add routes to the table, and route delete is used to
delete routes from the table. Note that routes added to the table are not made permanent
unless the -p switch is specified. Non-persistent routes only last until the computer is
rebooted.

In order for two hosts to exchange IP datagrams, they must both have a route to each
other, or use default gateways that know of a route. Normally, routers exchange
information with each other using a protocol such as Routing Information Protocol
(RIP) or Open Shortest Path First (OSPF). Windows NT 3.5x did not include support for
either of these routing protocols, so when these computers are used as routers it is often
necessary to manually add routes. Microsoft is working on RIP and OSPF support for
Windows NT.

Netstat
Netstat displays protocol statistics and current TCP/IP connections. Netstat -a displays
all connections, and netstat -r displays the route table, plus active connections. The -n
switch tells netstat not to convert addresses and port numbers to names. Sample output
is shown below:

C:\>netstat -e
Interface Statistics
 Received Sent
Bytes 3995837940 47224622
Unicast packets 120099 131015
Non-unicast packets 7579544 3823
Discards 0 0
Errors 0 0
Unknown protocols 363054211
C:\>netstat -a
Active Connections
 Proto Local Address Foreign Address State
 TCP davemac1:1572 10.57.13.152:nbsession ESTABLISHED
 TCP davemac1:1589 10.57.9.147:nbsession ESTABLISHED
 TCP davemac1:1606 11.1.105.245:nbsession ESTABLISHED
 TCP davemac1:1632 10.57.9.213:nbsession ESTABLISHED
 TCP davemac1:1659 10.55.86.169:nbsession ESTABLISHED
 TCP davemac1:1714 10.55.80.203:nbsession ESTABLISHED
 TCP davemac1:1719 10.54.67.36:nbsession ESTABLISHED
 TCP davemac1:1241 10.57.9.101:nbsession ESTABLISHED
 UDP davemac1:1025 *:*
 UDP davemac1:snmp *:*
 UDP davemac1:nbname *:*
 UDP davemac1:nbdatagram *:*
 UDP davemac1:nbname *:*
 UDP davemac1:nbdatagram *:*
C:\>netstat -s
IP Statistics
 Packets Received = 5378528
 Received Header Errors = 738854
 Received Address Errors = 23150

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 47

 Datagrams Forwarded = 0
 Unknown Protocols Received = 0
 Received Packets Discarded = 0
 Received Packets Delivered = 4616524
 Output Requests = 132702
 Routing Discards = 157
 Discarded Output Packets = 0
 Output Packet No Route = 0
 Reassembly Required = 0
 Reassembly Successful = 0
 Reassembly Failures = 0
 Datagrams Successfully Fragmented = 0
 Datagrams Failing Fragmentation = 0
 Fragments Created = 0
ICMP Statistics
 Received Sent
 Messages 693 4
 Errors 0 0
 Destination Unreachable 685 0
 Time Exceeded 0 0
 Parameter Problems 0 0
 Source Quenchs 0 0
 Redirects 0 0
 Echos 4 0
 Echo Replies 0 4
 Timestamps 0 0
 Timestamp Replies 0 0
 Address Masks 0 0
 Address Mask Replies 0 0
TCP Statistics
 Active Opens = 597
 Passive Opens = 135
 Failed Connection Attempts = 107
 Reset Connections = 91
 Current Connections = 8
 Segments Received = 106770
 Segments Sent = 118431
 Segments Retransmitted = 461
UDP Statistics
 Datagrams Received = 4157136
 No Ports = 351928
 Receive Errors = 2
 Datagrams Sent = 13809

NBTStat
NBTStat is a useful tool for troubleshooting NetBIOS name resolution problems.
NBTStat -n displays the names that were registered locally on the system by
applications, such as the server and redirector. NBTStat -c shows the NetBIOS name
cache, which contains name-to-address mappings for other computers. NBTStat -R
purges the name cache and reloads it from the LMHOSTS file. NBTStat -a <name>
performs a NetBIOS adapter status command against the computer specified by name.
The adapter status command returns the local NetBIOS name table for that computer
plus the MAC address of the adapter card. NBTStat -S lists the current NetBIOS
sessions and their status, including statistics, as shown:

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 48

NetBIOS Connection Table
Local Name State In/Out Remote Host Input Output
--
DAVEMAC1 <00> Connected Out CNSSUP1<20> 6MB 5MB
DAVEMAC1 <00> Connected Out CNSPRINT<20> 108KB 116KB
DAVEMAC1 <00> Connected Out CNSSRC1<20> 299KB 19KB
DAVEMAC1 <00> Connected Out STH2NT<20> 324KB 19KB
DAVEMAC1 <03> Listening

Performance Monitor
The Windows NT Performance Monitor can be used to view many different TCP/IP-
related counters. Since it accesses statistics that have been gathered by the SNMP agent,
the SNMP agent must be installed on computers that are to be monitored. Counters are
available for the NIC, IP, ICMP, UDP, TCP, and NBT. One of the features of
Performance Monitor is that it allows counters from various systems to be monitored
from a single management window. It also supports setting alert levels for the counters
being monitored. The Windows NT Resource Kit book “Optimizing Windows NT” is
an excellent resource on using Performance Monitor effectively.

Figure 5 shows a sample Performance Monitor window used for monitoring
ftp.microsoft.com. Each of the counters has a scaling factor shown at the left of the
counter description. There are 100 sample points on the chart taken at three-second
intervals. During the five minutes shown here, the server averaged 1308 packets per
second at the NIC (all protocols), and about 1000 IP datagrams per second. There was
an average of approximately 450 TCP connections present for the sample period.

Figure 5: Performance Monitor

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 49

Microsoft Network Monitor
Microsoft Network Monitor is a tool developed by Microsoft to make the task of
troubleshooting complex network problems much easier and more economical. It is
packaged as part of the Microsoft Systems Management Server product but can be used
as a standalone network monitor. In addition, Windows NT and Windows 95
distribution media includes Network Monitor Agent software. Stations running Network
Monitor can attach to stations running the agent software over the network or using
dial-up (RAS) to perform monitoring or tracing of remote network segments. This can
be a very useful troubleshooting tool.

Network Monitor works by placing the NIC on the capturing host into “promiscuous”
mode so that it passes up every frame seen on the wire to the tracing tool. Capture
filters can be defined so that only specific frames are saved for analysis. Filters can be
defined based on source and destination NIC addresses, source and destination protocol
addresses, and pattern matches. Once a capture has been obtained, display filtering can
be used to further narrow down a problem. Display filtering allows specific protocols to
be selected as well.

Once a capture has been obtained and filtered, Network Monitor protocol parsing
interprets the binary trace data into readable terms using parsing DLLs. A sample SMB
(Server Message Block) frame is shown fully parsed below:

**
Frame Time Src Other Addr Dst Other Addr Protocol Description
7 0.020 10.57.9.138 10.57.13.152 SMB C get attributes, File = \temp
 FRAME: Base frame properties
 FRAME: Time of capture = Jun 27, 1995 8:11:11.636
 FRAME: Time delta from previous physical frame: 3 milliseconds
 FRAME: Frame number: 7
 FRAME: Total frame length: 106 bytes
 FRAME: Capture frame length: 106 bytes
 FRAME: Frame data: Number of data bytes remaining = 106 (0x006A)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 00608C0E6C6A
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 0020AF1D2B91
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 106 (0x006A)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 92 (0x005C)
 IP: ID = 0x4072; Proto = TCP; Len: 92
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Service Type = 0 (0x0)
 IP: Precedence = Routine
 IP: ...0.... = Normal Delay
 IP:0... = Normal Throughput
 IP:0.. = Normal Reliability
 IP: Total Length = 92 (0x5C)
 IP: Identification = 16498 (0x4072)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 32 (0x20)
 IP: Protocol = TCP - Transmission Control
 IP: CheckSum = 0xC895
 IP: Source Address = 10.57.9.138
 IP: Destination Address = 10.57.13.152
 IP: Data: Number of data bytes remaining = 72 (0x0048)

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 50

 TCP: .AP..., len: 52, seq: 344830227, ack: 2524988, win: 8166, src: 1677 dst: (NBT
Session)

 TCP: Source Port = 0x068D
 TCP: Destination Port = NETBIOS Session Service
 TCP: Sequence Number = 344830227 (0x148DB113)
 TCP: Acknowledgement Number = 2524988 (0x26873C)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:1... = Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 8166 (0x1FE6)
 TCP: CheckSum = 0xC072
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 52 (0x0034)
 NBT: SS: Session Message, Len: 48
 NBT: Packet Type = Session Message
 NBT: Packet Flags = 0 (0x0)
 NBT:0 = Add 0 to Length
 NBT: Packet Length = 48 (0x30)
 NBT: SS Data: Number of data bytes remaining = 48 (0x0030)
 SMB: C get attributes, File = \temp
 SMB: SMB Status = Error Success
 SMB: Error class = No Error
 SMB: Error code = No Error
 SMB: Header: PID = 0xCAFE TID = 0x0800 MID = 0x43C0 UID = 0x0800
 SMB: Tree ID (TID) = 2048 (0x800)
 SMB: Process ID (PID) = 51966 (0xCAFE)
 SMB: User ID (UID) = 2048 (0x800)
 SMB: Multiplex ID (MID) = 17344 (0x43C0)
 SMB: Flags Summary = 24 (0x18)
 SMB:0 = Lock & Read and Write & Unlock not supported
 SMB:0. = Send No Ack not supported
 SMB:1... = Using caseless pathnames
 SMB: ...1.... = Canonicalized pathnames
 SMB: ..0..... = No Opportunistic lock
 SMB: .0...... = No Change Notify
 SMB: 0....... = Client command
 SMB: flags2 Summary = 32771 (0x8003)
 SMB:1 = Understands long filenames
 SMB:1. = Understands extended attributes
 SMB: ..0............. = No paging of IO
 SMB: .0.............. = Using SMB status codes
 SMB: 1............... = Using UNICODE strings
 SMB: Command = C get attributes
 SMB: Word count = 0
 SMB: Byte count = 13
 SMB: Byte parameters
 SMB: Path name = \temp
00000: 00 60 8C 0E 6C 6A 00 20 AF 1D 2B 91 08 00 45 00 .`..lj. ..+...E.
00010: 00 5C 40 72 40 00 20 06 C8 95 9D 39 09 8A 9D 39 .\@r@.9...9
00020: 0D 98 06 8D 00 8B 14 8D B1 13 00 26 87 3C 50 18 &.<P.
00030: 1F E6 C0 72 00 00 00 00 00 30 FF 53 4D 42 08 00 ...r.....0.SMB..
00040: 00 00 00 18 03 80 00 00 00 00 00 00 00 00 00 00
00050: 00 00 00 08 FE CA 00 08 C0 43 00 0D 00 04 5C 00 C....\.
00060: 74 00 65 00 6D 00 70 00 00 00 t.e.m.p...

The parsed output consists of three sections–a summary window, a detailed description
window, and the hex output. If traces are to be sent to support personnel at Microsoft,
they are most useful in electronic form rather than printed form, as they can be
manipulated and scanned electronically. Large printed traces are time-consuming to
read.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 51

The Microsoft KnowledgeBase (KB)
The Microsoft KB is an excellent source of information on all aspects of Windows NT.
It contains thousands of articles written by the support professionals in the Corporate
Network Systems unit at Microsoft. Articles are updated daily, and topics include:

n Installation and configuration information.

n Status on known problems and fixes.

n Service Pack updates.

n Technology discussions

n Troubleshooting tips.

n Hardware-specific information.

The Microsoft KB is available from many different sources, including: the Internet
(full-text search capabilities for WWW browsers on www.microsoft.com), several on-
line services, and CD-ROM subscription services, such as Microsoft TechNet.

Summary
In summary, when troubleshooting, it is usually best to first verify that a path exists
between the hosts in question using ping (by address). Then verify the ability to resolve
hostnames using ping by name. Then, if NetBIOS is involved, verify that those names
can be resolved, using net view <servername> or a similar command. Compile a list of
what works and what doesn’t work, then study the list to help isolate the failure. If link
reliability is in question, try a large number of pings of various sizes at different times
of the day, and plot the success rate. When all else fails, a protocol analyzer, such as
Microsoft Network Monitor, may be helpful.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 52

Appendix A: TCP/IP Configuration Parameters

Introduction
The TCP/IP protocol suite implementation for Windows NT 3.5x reads all of its
configuration data from the registry. This information is written to the registry by the
Network Control Panel Applet (NCPA) as part of the setup process. Some of this
information is also supplied by the Dynamic Host Configuration Protocol (DHCP)
client service if it is enabled. This reference defines all of the registry parameters used
to configure the protocol driver, TCPIP.SYS, which implements the standard TCP/IP
network protocols.

The implementation of the protocol suite should perform properly and efficiently in
most environments using only the configuration information gathered by the NCPA and
DHCP. Optimal default values for all other configurable aspects of the protocols have
been encoded into the drivers. There may be some circumstances in customer
installations where changes to certain default values are appropriate. To handle these
cases, optional registry parameters can be created to modify the default behavior of
some parts of the protocol drivers.

CAUTION: The Windows NT 3.5 TCP/IP implementation is largely self
tuning. Adjusting registry parameters may adversely affect system
performance.

All of the TCP/IP parameters are registry values located under one of two different
subkeys of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services:

n Tcpip\Parameters

n <Adapter Name>\Parameters\Tcpip, in which <Adapter Name> refers to the
subkey for a network adapter that TCP/IP is bound to, such as Lance01.

Values under the latter key(s) are specific to each adapter. Parameters for which there
may be both a DHCP and statically configured value may or may not exist depending
on whether the system/adapter is DHCP configured and/or static override values have
been specified. A reboot of the system is required for a change in any of these
parameters to take effect.

IMPORTANT NOTE: The Windows NT 3.5 Resource Kit documentation was
not updated properly from version 3.1, and lists a number of invalid TCP/IP
registry parameters. The parameters listed in this document should be used
in their place. The Windows NT 3.5 TCP/IP stack was a complete re-write, so
many of the old parameters are no longer valid. The Windows NT 3.51
Resource Kit should include the necessary corrections.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 53

Standard Parameters Configurable using the Registry
Editor
The following parameters are installed with default values by the NCPA during the
installation of the TCP/IP components. They may be modified using the Registry Editor
(regedt32.exe).

DatabasePath
Key: Tcpip\Parameters
Value Type: REG_EXPAND_SZ - Character string
Valid Range: A valid Windows NT file path
Default: %SystemRoot%\system32\drivers\etc
Description: This parameter specifies the path to the standard internet database
files (HOSTS, LMHOSTS, NETWORKS, PROTOCOLS, SERVICES). It is
used by the Windows Sockets interface.

ForwardBroadcasts
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: Forwarding of broadcasts is not supported. This parameter is
ignored.

UseZeroBroadcast
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: If this parameter is set to 1 (True), then IP will use zeros-
broadcasts (0.0.0.0) instead of ones-broadcasts (255.255.255.255). Most
systems use ones-broadcasts, but some systems derived from BSD
implementations use zeros-broadcasts. Systems that use different broadcasts
will not interoperate well on the same network.

Optional Parameters Configurable using the Registry
Editor
These parameters normally do not exist in the registry. They may be created to modify
the default behavior of the TCP/IP protocol driver.

ArpAlwaysSourceRoute (new in NT 3.51)
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0,1 (False or True)
Default: 0 (False)
Description: Setting this parameter to 1 will force TCP/IP to transmit ARP
queries with source routing enabled on Token Ring networks. By default, the
stack transmits ARP queries without source routing first and retries with source
routing enabled if no reply was received.

ArpUseEtherSNAP
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 54

Valid Range: 0,1 (False or True)
Default: 0 (False)
Description: Setting this parameter to 1 will force TCP/IP to transmit Ethernet
packets using 802.3 SNAP encoding. By default, the stack transmits packets in
DIX Ethernet format. It will always receive both formats.

DefaultTOS
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number
Valid Range: 0 - 255
Default: 0
Description: Specifies the default Type Of Service (TOS) value set in the
header of outgoing IP packets. See RFC 791 for a definition of the values.

DefaultTTL
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number of seconds/hops
Valid Range: 1-255
Default: 32
Description: Specifies the default Time To Live (TTL) value set in the header
of outgoing IP packets. The TTL determines the maximum amount of time an
IP packet may live in the network without reaching its destination. It is
effectively a limit on the number of routers an IP packet may pass through
before being discarded.

EnableDeadGWDetect
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0,1 (False, True)
Default: 1 (True)
Description: Setting this parameter to 1 causes TCP to perform Dead Gateway
Detection. With this feature enabled, TCP will ask IP to change to a backup
gateway if it re-transmits a segment several times without receiving a response.
Backup gateways may be defined in the Advanced section of the TCP/IP
configuration dialog in the Network Control Panel.

EnablePMTUBHDetect
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0,1 (False, True)
Default: 0 (False)
Description: Setting this parameter to 1 (True) causes TCP to try to detect
“Black Hole” routers while doing Path MTU Discovery. A “Black Hole” router
does not return ICMP Destination Unreachable messages when it needs to
fragment an IP datagram with the Don’t Fragment bit set. TCP depends on
receiving these messages to perform Path MTU Discovery. With this feature
enabled, TCP will try to send segments without the Don’t Fragment bit set if
several re-transmissions of a segment go unacknowledged22. If the segment is
acknowledged as a result, the MSS will be decreased and the Don’t Fragment
bit will be set in future packets on the connection. Enabling black hole
detection increases the maximum number of re-transmissions performed for a
given segment.

EnablePMTUDiscovery

22 As of Windows NT 3.51 Service Pack 2, the algorithm for PMTUBH Detection has been modified. The new algorithm is to reduce the MTU to 576 bytes
(TCP MSS = 536) if no acknowledgment is received after retransmitting a large segment several times. Details are available from the Microsoft Windows
NT Knowledgebase.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 55

Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0,1 (False, True)
Default: 1 (True)
Description: Setting this parameter to 1 (True) causes TCP to attempt to
discover the Maximum Transmission Unit (MTU or largest packet size) over
the path to a remote host. By discovering the Path MTU and limiting TCP
segments to this size, TCP can eliminate fragmentation at routers along the
path that connect networks with different MTUs. Fragmentation adversely
affects TCP throughput and network congestion. Setting this parameter to 0
causes an MTU of 576 bytes to be used for all connections that are not to
machines on the local subnet.

ForwardBufferMemory
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number of bytes
Valid Range: <network MTU> - <some reasonable value smaller than
0xFFFFFFFF >
Default: 74240 (enough for fifty 1480-byte packets, rounded to a multiple of
256)
Description: This parameter determines how much memory IP allocates to
store packet data in the router packet queue. When this buffer space is filled,
the router begins discarding packets at random from its queue. Packet queue
data buffers are 256 bytes in length, so the value of this parameter should be a
multiple of 256. Multiple buffers are chained together for larger packets. The
IP header for a packet is stored separately. This parameter is ignored and no
buffers are allocated if the IP routing function is not enabled.

IGMPLevel
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number
Valid Range: 0,1,2
Default: 2
Description: This parameter determines to what extent the system supports IP
multicasting and participates in the Internet Group Management Protocol. At
level 0, the system provides no multicast support. At level 1, the system may
only send IP multicast packets. At level 2, the system may send IP multicast
packets and fully participate in IGMP to receive multicast packets.

KeepAliveInterval
Key: Tcpip\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 1 - 0xFFFFFFFF
Default: 1000 (one second)
Description: This parameter determines the interval between keep alive re-
transmissions until a response is received. Once a response is received, the
delay until the next keep alive transmission is again controlled by the value of
KeepAliveTime. The connection will be aborted after the number of re-
transmissions specified by TcpMaxDataRetransmissions have gone
unanswered.

KeepAliveTime
Key: Tcpip\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 1 - 0xFFFFFFFF
Default: 7,200,000 (two hours)

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 56

Description: The parameter controls how often TCP attempts to verify that an
idle connection is still intact by sending a keep alive packet. If the remote
system is still reachable and functioning, it will acknowledge the keep alive
transmission. Keep alive packets are not sent by default. This feature may be
enabled on a connection by an application.

MTU
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD Number
Valid Range: 68 - <the MTU of the underlying network>
Default: 0xFFFFFFFF
Description: This parameter overrides the default Maximum Transmission
Unit (MTU) for a network interface. The MTU is the maximum packet size in
bytes that the transport will transmit over the underlying network. The size
includes the transport header. Note that an IP datagram may span multiple
packets. Values larger than the default for the underlying network will result in
the transport using the network default MTU. Values smaller than 68 will
result in the transport using an MTU of 68.

IMPORTANT NOTE: Windows NT TCP/IP uses PMTU detection by
default, and queries the NIC driver to find out what local MTU is supported.
Altering the MTU parameter is generally not necessary, and may result in
reduced performance. See the PMTU detection discussion in the TCP section
of this document for more details.

NumForwardPackets
Key: Tcpip\Parameters
Value Type: REG_DWORD Number
Valid Range: 1 - <some reasonable value smaller than 0xFFFFFFFF>
Default: 50
Description: This parameter determines the number of IP packet headers
allocated for the router packet queue. When all headers are in use, the router
will begin to discard packets at random from the queue. This value should be
at least as large as the ForwardBufferMemory value divided by the maximum
IP data size of the networks connected to the router. It should be no larger than
the ForwardBufferMemory value divided by 256, since at least 256 bytes of
forward buffer memory is used for each packet. The optimal number of
forward packets for a given ForwardBufferMemory size depends on the type of
traffic carried on the network and will be somewhere in between these two
values. This parameter is ignored and no headers are allocated if routing is not
enabled.

TcpMaxConnectRetransmissions
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number
Valid Range: 0 - 0xFFFFFFFF
Default: 3
Description: This parameter determines the number of times TCP will re-
transmit a connect request (SYN) before aborting the attempt. The re-
transmission timeout is doubled with each successive re-transmission in a
given connect attempt. The initial timeout value is three seconds.

TcpMaxDataRetransmissions
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number
Valid Range: 0 - 0xFFFFFFFF
Default: 5

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 57

Description: This parameter controls the number of times TCP will re-transmit
an individual data segment (not connection request segments) before aborting
the connection. The re-transmission timeout is doubled with each successive
re-transmission on a connection. It is reset when responses resume. The base
timeout value is dynamically determined by the measured round-trip time on
the connection.

TcpNumConnections
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number
Valid Range: 0 - 0xfffffe
Default: 0xfffffe
Description: This parameter limits the maximum number of connections that
TCP may have open simultaneously.

TcpUseRFC1122UrgentPointer
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0,1 (False, True)
Default: 0 (False)
Description: This parameter determines whether TCP uses the RFC 1122
specification for urgent data or the mode used by BSD-derived systems. The
two mechanisms interpret the urgent pointer in the TCP header and the length
of the urgent data differently. They are not interoperable. Windows NT
defaults to BSD mode.

TcpWindowSize
Key: Tcpip\Parameters
Value Type: REG_DWORD - Number of bytes
Valid Range: 0 - 0xFFFF
Default: The smaller of 0xFFFF
OR
(The larger of four times the maximum TCP data size on the network
OR
8192 rounded up to an even multiple of the network TCP data size.)
The default is 8760 for Ethernet.
Description: This parameter determines the maximum TCP receive window
size offered by the system. The receive window specifies the number of bytes a
sender may transmit without receiving an acknowledgment. In general, larger
receive windows will improve performance over high delay, high bandwidth
networks. For greatest efficiency, the receive window should be an even
multiple of the TCP Maximum Segment Size (MSS).

Parameters Configurable from the NCPA
The following parameters are created and modified automatically by the NCPA as a
result of user-supplied information. There should be no need to configure them directly
in the registry.

DefaultGateway
Key: <AdapterName>\Parameters\Tcpip
Value Type: REG_MULTI_SZ - List of dotted decimal IP addresses
Valid Range: Any set of valid IP addresses
Default: None

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 58

Description: This parameter specifies the list of gateways to be used to route
packets not destined for a subnet that the computer is directly connected to,
and for which a more specific route does not exist. This parameter, if it has a
valid value, overrides the DhcpDefaultGateway parameter.

Domain
Key: Tcpip\Parameters
Value Type: REG_SZ - Character string
Valid Range: Any valid DNS domain name
Default: None
Description: This parameter specifies the DNS domain name of the system. It
is used by the Windows Sockets interface.

EnableDhcp
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: If this parameter is set to 1 (True), then the DHCP client service
will attempt to configure the first IP interface on this adapter using DHCP.

Hostname
Key: Tcpip\Parameters
Value Type: REG_SZ - Character string
Valid Range: Any valid DNS hostname
Default: The computername of the system
Description: This parameter specifies the DNS hostname of the system, that
will be returned by the “hostname” command.

IPAddress
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_MULTI_SZ - List of dotted-decimal IP addresses
Valid Range: Any set of valid IP addresses
Default: None
Description: This parameter specifies the IP addresses of the IP interfaces to
be bound to the adapter. If the first address in the list is 0.0.0.0, then the
primary interface on the adapter will be configured from DHCP. A system with
more than one IP interface for an adapter is called “logically multihomed.”
There must be a valid subnet mask value in the SubnetMask parameter for
each IP address specified in this parameter.

IPEnableRouter
Key: Tcpip\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: Setting this parameter to 1 (True) causes the system to route IP
packets between the networks to which it is connected.

NameServer
Key: Tcpip\Parameters
Value Type: REG_SZ - A space delimited list of dotted decimal IP addresses
Valid Range: Any set of valid IP address
Default: None (Blank)
Description: This parameter specifies the DNS name servers to be queried by
Windows Sockets to resolve names.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 59

SearchList
Key: Tcpip\Parameters
Value Type: REG_SZ - Space delimited list of DNS domain name suffixes
Valid Range: Any set of valid DNS domain name suffixes
Default: None
Description: This parameter specifies a list of domain name suffixes to append
to a name to be resolved via the DNS if resolution of the unadorned name fails.
By default, only the value of the Domain parameter is appended. This
parameter is used by the Windows Sockets interface.

SubnetMask
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_MULTI_SZ - List of dotted decimal IP addresses
Valid Range: Any set of valid IP addresses.
Default: None
Description: This parameter specifies the subnet masks to be used with the IP
interfaces bound to the adapter. If the first mask in the list is 0.0.0.0, then the
primary interface on the adapter will be configured via DHCP. There must be a
valid subnet mask value in this parameter for each IP address specified in the
IPAddress parameter.

Parameters Configurable via the Route.exe Command
in Windows NT 3.51
In Windows NT 3.51, the route.exe command can store persistent IP routes as values
under the Tcpip\Parameters\PersistentRoutes key. Each route is stored in the value
name string as a comma-delimited list of the form:

destination,subnet mask,gateway

For example, the value representing a host route to destination 45.100.23.10 through
gateway 131.110.0.1 would be named:

45.100.23.10,255.255.255.255,131.110.0.1

The value type is a REG_SZ. There is no value data (empty string). Addition and
deletion of these values can be accomplished using the route command. There should
be no need to configure them directly.

Non-Configurable Parameters
The following parameters are created and used internally by the TCP/IP components.
They should never be modified using the Registry Editor. They are listed here for
reference only.

DhcpDefaultGateway
Key: <Adapter Name>\Parameters\ Tcpip
Value Type: REG_MULTI_SZ - List of dotted decimal IP addresses
Valid Range: Any set of valid IP addresses
Default: None
Description: This parameter specifies the list of default gateways to be used to
route packets not destined for a subnet to which the computer is directly
connected, and for which a more specific route does not exist. This parameter
is written by the DHCP client service, if enabled. This parameter is overridden
by a valid DefaultGateway parameter value.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 60

DhcpIPAddress
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_SZ - Dotted decimal IP address
Valid Range: Any valid IP address
Default: None
Description: This parameter specifies the DHCP-configured IP address for the
interface. If the IPAddress parameter contains a first value other than 0.0.0.0,
then that value will override this parameter.

DhcpNameServer
Key: Tcpip\Parameters
Value Type: REG_SZ - A space delimited list of dotted decimal IP addresses
Valid Range: Any set of valid IP address
Default: None
Description: This parameter specifies the DNS name servers to be queried by
Windows Sockets to resolve names. It is written by the DHCP client service, if
enabled. If the NameServer parameter has a valid value, then it will override
this parameter.

DhcpServer
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_SZ - Dotted decimal IP address
Valid Range: Any valid IP address
Default: None
Description: This parameter specifies the IP address of the DHCP server that
granted the lease on the IP address in the DhcpIPAddress parameter.

DhcpSubnetMask
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_SZ - Dotted decimal IP subnet mask
Valid Range: Any subnet mask that is valid for the configured IP address
Default: None
Description: This parameter specifies the DHCP-configured subnet mask for
the address specified in the DhcpIPAddress parameter.

IPInterfaceContext
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD
Valid Range: 0 - 0xFFFFFFFF
Default: None
Description: This parameter is written by the TCP/IP driver for use by the
DHCP client service.

Lease
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD - Time in seconds
Valid Range: 1 - 0xFFFFFFFF
Default: None
Description: This parameter is used by the DHCP client service to store the
time in seconds for which the lease on the IP address for this adapter is valid.

LeaseObtainedTime
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD - Absolute time in seconds since midnight of
1/1/70
Valid Range: 1 - 0xFFFFFFFF
Default: None

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 61

Description: This parameter is used by the DHCP client service to store the
time at which the lease on the IP address for this adapter was obtained.

LeaseTerminatesTime
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD - Absolute time in seconds since midnight of
1/1/70
Valid Range: 1 - 0xFFFFFFFF
Default: None
Description: This parameter is used by the DHCP client service to store the
time at which the lease on the IP address for this adapter will expire.

LLInterface
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_SZ - NT device name
Valid Range: A legal NT device name
Default: Empty string (Blank)
Description: This parameter is used to direct IP to bind to a different link-layer
protocol than the built-in ARP module. The value of the parameter is the name
of the Windows NT device to which IP should bind. This parameter is in
conjunction with the RAS component, for example.

T1
Key: <Adapter Name>\Parameters\Tcpip
Value Type: REG_DWORD - Absolute time in seconds since midnight of
1/1/70
Valid Range: 1 - 0xFFFFFFFF
Default: None
Description: This parameter is used by the DHCP client service to store the
time at which the service will first try to renew the lease on the IP address for
the adapter by contacting the server that granted the lease.

T2
Key: <AdapterName>\Parameters\Tcpip
Value Type: REG_DWORD - Absolute time in seconds since midnight of
1/1/70
Valid Range: 1 - 0xFFFFFFFF
Default: None
Description: This parameter is used by the DHCP client service to store the
time at which the service will try to renew the lease on the IP address for the
adapter by broadcasting a renewal request. Time T2 should only be reached if
the service has been unable to renew the lease with the original server for some
reason.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 62

Appendix B:
NetBT (NetBIOS over TCP) Configuration Parameters

Introduction
All of the NetBT parameters are registry values located under one of two different
subkeys of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services:

 NetBT\Parameters

 NetBT\Adapters\<Adapter Name>, in which <Adapter Name> refers the subkey for
a network adapter that NetBT is bound to, such as Lance01.

Values under the latter key(s) are specific to each adapter. If the system is configured
via DHCP, then a change in parameters will take effect if the command ipconfig /renew
is issued in a command shell. Otherwise, a reboot of the system is required for a change
in any of these parameters to take effect.

Standard Parameters Configurable from the Registry
Editor
The following parameters are installed with default values by the NCPA during the
installation of the TCP/IP components. They may be modified using the Registry Editor
(regedt32.exe).

BcastNameQueryCount
Key: Netbt\Parameters
Value Type: REG_DWORD - Count
Valid Range: 1 to 0xFFFF
Default: 3
Description: This value determines the number of times NetBT broadcasts a
query for a given name without receiving a response.

BcastQueryTimeout
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 100 to 0xFFFFFFFF
Default: 0x2ee (750 decimal)
Description: This value determines the time interval between successive
broadcast name queries for the same name.

CacheTimeout
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 60000 to 0xFFFFFFFF
Default: 0x927c0 (600000 milliseconds = 10 minutes)
Description: This value determines the time interval that names are cached in
the remote name table.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 63

NameServerPort
Key: Netbt\Parameters
Value Type: REG_DWORD - UDP port number
Valid Range: 0 - 0xFFFF
Default: 0x89
Description: This parameter determines the destination port number to which
NetBT will send name service related packets, such as name queries and name
registrations, to WINS. The Microsoft WINS Server listens on port 0x89.
NetBIOS name servers from other vendors may listen on different ports.

NameSrvQueryCount
Key: Netbt\Parameters
Value Type: REG_DWORD - Count
Valid Range: 0 - 0xFFFF
Default: 3
Description: This value determines the number of times NetBT sends a query
to a WINS server for a given name without receiving a response.

NameSrvQueryTimeout
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 100 - 0xFFFFFFFF
Default: 1500 (1.5 seconds)
Description: This value determines the time interval between successive name
queries to WINS for a given name.

SessionKeepAlive
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 60,000 - 0xFFFFFFFF
Default: 3,600,000 (1 hour)
Description: This value determines the time interval between keepalive
transmissions on a session. Setting the value to 0xFFFFFFF disables
keepalives.

Size/Small/Medium/Large
Key: Netbt\Parameters
Value Type: REG_DWORD
Valid Range: 1, 2, 3 (Small, Medium, Large)
Default: 1 (Small)
Description: This value determines the size of the name tables used to store
local and remote names. In general, a setting of Small is adequate. If the
system is acting as a proxy nameserver, then the value is automatically set to
Large to increase the size of the name cache hash table. Hash table buckets are
sized as follows:

Large: 256 Medium: 128 Small: 16

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 64

Optional Parameters Configurable from the Registry
Editor
These parameters normally do not exist in the registry. They may be created to modify
the default behavior of the NetBT protocol driver.

BroadcastAddress
Key: Netbt\Parameters
Value Type: REG_DWORD - Four byte, little-endian encoded IP address
Valid Range: 0 - 0xFFFFFFFF
Default: The ones-broadcast address for each network.
Description: This parameter can be used to force NetBT to use a specific
address for all broadcast name related packets. By default, NetBT uses the
ones-broadcast address appropriate for each net (i.e., for a network of
10.101.0.0 with a subnet mask of 255.255.0.0, the subnet broadcast address
would be 10.101.255.255). This parameter would be set, for example, if the
network uses the zeros-broadcast address (set using the UseZeroBroadcast
TCP/IP parameter). The appropriate subnet broadcast address would then be
10.101.0.0 in the example above. This parameter would then be set to
0x0b650000. Note that this parameter is global and will be used on all subnets
that NetBT is bound to.

EnableProxyRegCheck
Key: Netbt\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: If this parameter is set to 1 (True), then the proxy name server
will send a negative response to a broadcast name registration if the name is
already registered with WINS or is in the proxy’s local name cache with a
different IP address. The hazard of enabling this feature is that it prevents a
system from changing its IP address as long as WINS has a mapping for the
name. For this reason, it is disabled by default.

InitialRefreshTimeout
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 960000 - 0xFFFFFFF
Default: 960000 (16 minutes)
Description: This parameter specifies the initial refresh timeout used by
NetBT during name registration. NetBT tries to contact the WINS servers at
1/8th of this time interval when it is first registering names. When it receives a
successful registration response, that response will contain the new refresh
interval to use.

LmhostsTimeout
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 1000 - 0xFFFFFFFF
Default: 6000 (6 seconds)
Description: This parameter specifies the timeout value for LMHOSTS and
DNS name queries. The timer has a granularity of the timeout value, so the
actual timeout could be as much as twice the value.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 65

MaxDgramBuffering
Key: Netbt\Parameters
Value Type: REG_DWORD - Count of bytes
Valid Range: 0 - 0xFFFFFFFF
Default: 0x20000 (128 Kb)
Description: This parameter specifies the maximum amount of memory that
NetBT will dynamically allocate for all outstanding datagram sends. Once this
limit is reached, further sends will fail due to insufficient resources.

NodeType
Key: Netbt\Parameters
Value Type: REG_DWORD - Number
Valid Range: 1,2,4,8 (b-node, p-node, m-node, h-node)
Default: 1 or 8 based on the WINS server configuration
Description: This parameter determines what methods NetBT will use to
register and resolve names. A b-node system uses broadcasts. A p-node system
uses only point-to-point name queries to a name server (WINS). An m-node
system broadcasts first, then queries the name server. An h-node system
queries the name server first, then broadcasts. Resolution via LMHOSTS
and/or DNS, if enabled, will follow these methods. If this key is present it will
override the DhcpNodeType key. If neither key is present, the system defaults
to b-node if there are no WINS servers configured for the client. The system
defaults to h-node if there is at least one WINS server configured.

RandomAdapter
Key: Netbt\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: This parameter applies to a multihomed host only. If it is set to 1
(True), then NetBT will randomly choose the IP address to put in a name query
response from all of its bound interfaces. Usually, the response contains the
address of the interface that the query arrived on. This feature would be used
by a server with two interfaces on the same network for load balancing.

RefreshOpCode
Key: Netbt\Parameters
Value Type: REG_DWORD - Number
Valid Range: 8, 9
Default: 8
Description: This parameter forces NetBT to use a specific opcode in name
refresh packets. The specification for the NetBT protocol is somewhat
ambiguous in this area. Although the default of 8 used by Microsoft
implementations appears to be the intended value, some other
implementations, such as those by Ungermann-Bass, use the value 9. Two
implementations must use the same opcode to interoperate.

SingleResponse
Key: Netbt\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: This parameter applies to a multihomed host only. If this
parameter is set to 1 (True), then NBT will only supply an IP address from one
of its bound interfaces in name query responses. By default, the addresses of
all bound interfaces are included.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 66

WinsDownTimeout
Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 1000 - 0xFFFFFFFF
Default: 15,000 (15 seconds)
Description: This parameter determines the amount of time NetBT will wait
before again trying to use WINS after it fails to contact any WINS server. This
feature primarily allows computers that are temporarily disconnected from the
network, such as laptops, to proceed through boot processing without waiting
to timeout out each WINS name registration or query individually.

Parameters Configurable from the NCPA
The following parameters can be set via the NCPA. There should be no need to
configure them directly.

EnableDns
Key: Netbt\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: If this value is set to 1 (True), then NetBT will query the DNS for
names that cannot be resolved by WINS, broadcast, or the LMHOSTS file.

EnableLmhosts
Key: Netbt\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 1 (True)
Description: If this value is set to 1 (True), then NetBT will search the
LMHOSTS file, if it exists, for names that cannot be resolved by WINS or
broadcast. By default there is no LMHOSTS file database directory (specified
by Tcpip\Parameters\DatabasePath), so no action will be taken. This value is
written by the Advanced TCP/IP Configuration dialog of the NCPA.

EnableProxy
Key: Netbt\Parameters
Value Type: REG_DWORD - Boolean
Valid Range: 0 or 1 (False or True)
Default: 0 (False)
Description: If this value is set to 1 (True), then the system will act as a proxy
name server for the networks to which NetBT is bound. A proxy name server
answers broadcast queries for names that it has resolved through WINS. A
proxy nameserver allows a network of b-node implementations to connect to
servers on other subnets that are registered with WINS.

NameServer
Key: Netbt\Adapters\<Adapter Name>
Value Type: REG_SZ - Dotted decimal IP address (i.e. 10.101.1.200)
Valid Range: Any valid IP address
Default: blank (no address)

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 67

Description: This parameter specifies the IP address of the primary WINS
server. If this parameter contains a valid value, it overrides the DHCP
parameter of the same name.

NameServerBackup
Key: Netbt\Adapters\<Adapter Name>
Value Type: REG_SZ - Dotted decimal IP address (i.e. 10.101.1.200)
Valid Range: Any valid IP address.
Default: blank (no address)
Description: This parameter specifies the IP address of the secondary WINS
server. If this parameter contains a valid value, it overrides the DHCP
parameter of the same name.

ScopeId
Key: Netbt\Parameters
Value Type: REG_SZ - Character string
Valid Range: Any valid DNS domain name consisting of two dot-separated
parts, or a “*”.
Default: None
Description: This parameter specifies the NetBIOS name scope for the node.
This value must not begin with a period. If this parameter contains a valid
value, it will override the DHCP parameter of the same name. A blank value
(empty string) will be ignored. Setting this parameter to the value “*” indicates
a null scope and will override the DHCP parameter.

Non-Configurable Parameters
The following parameters are created and used internally by the NetBT components.
They should never be modified using the Registry Editor. They are listed here for
reference only.

DhcpNameServer
Key: Netbt\Adapters\<Adapter Name>
Value Type: REG_SZ - Dotted decimal IP address (i.e. 10.101.1.200)
Valid Range: Any valid IP address
Default: None
Description: This parameter specifies the IP address of the primary WINS
server. It is written by the DHCP client service, if enabled. A valid
NameServer value will override this parameter.

DhcpNameServerBackup
Key: Netbt\Adapters\<Adapter Name>
Value Type: REG_SZ - Dotted decimal IP address (i.e. 10.101.1.200)
Valid Range: Any valid IP address
Default: None
Description: This parameter specifies the IP address of the secondary WINS
server. It is written by the DHCP client service, if enabled. A valid
NameServerBackup value will override this parameter.

DhcpNodeType
Key: Netbt\Parameters
Value Type: REG_DWORD - Number
Valid Range: 1 - 8
Default: 1

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 68

Description: This parameter specifies the NetBT node type. It is written by the
DHCP client service, if enabled. A valid NodeType value will override this
parameter. See the entry for NodeType for a complete description.

DhcpScopeId
Key: Netbt\Parameters
Value Type: REG_SZ - Character string
Valid Range: a dot separated name string such as “microsoft.com”
Default: None
Description: This parameter specifies the NetBIOS name scope for the node. It
is written by the DHCP client service, if enabled. This value must not begin
with a period. See the entry for ScopeId for more information.

NbProvider
Key: Netbt\Parameters
Value Type: REG_SZ - Character string
Valid Range: _tcp
Default: _tcp
Description: This parameter is used internally by the RPC component. The
default value should not be changed.

TransportBindName
Key: Netbt\Parameters
Value Type: REG_SZ - Character string
Valid Range: N/A
Default: \Device\
Description: This parameter is used internally during product development.
The default value should not be changed.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 69

Appendix C:
Windows Sockets (AFD.SYS) Registry Parameters

Introduction
AFD.SYS is the kernel-mode driver used to support Windows Sockets applications.
When there are three default values given, the default is calculated based on the amount
of memory detected in the system:

n The first value is the default for “small” computers (<12.5 MB).
n The second value is the default for “medium” computers (12.5 to 20MB).
n The third value is the default for large computers (> 20 MB).

For example, if the default is given as “0/2/10”, a system containing 12.5 to 20MB of
RAM would default to “2”.

Performance-Related Values
The following values may be set under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Afd\Parameters:

LargeBufferSize
Value Type: REG_DWORD
Default: 4096
Description: The size in bytes of large buffers used by AFD. Smaller values
use less memory, larger values can improve performance.

InitialLargeBufferCount
Value Type: REG_DWORD
Default: 0/2/10
Description: The count of large buffers allocated by AFD at system startup.
More buffers can be allocated to improve performance at the cost of physical
memory.

MediumBufferSize
Value Type: REG_DWORD
Default: 1504
Description: The size in bytes of medium buffers used by AFD.

InitialMediumBufferCount
Value Type: REG_DWORD
Default: 2/10/30
Description: The initial count of medium buffers.

SmallBufferSize
Value Type: REG_DWORD
Default: 64
Description: The size in bytes of small buffers used by AFD.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 70

InitialSmallBufferCount
Value Type: REG_DWORD
Default: 5/20/50
Description: The initial count of small buffers.

FastSendDatagramThreshold
Value Type: REG_DWORD
Default: 1024
Description: Datagrams smaller than this get buffered on send, and larger ones
are pended (locked down in memory, and held until the datagram is actually
sent). The default value was found by testing to be the best overall value for
performance. Changing this value is not recommended.

StandardAddressLength
Value Type: REG_DWORD
Default: 24
Description: The length of TDI addresses typically used for the computer.
When using an alternate transport protocol such as TP4, which uses very long
addresses, increasing this value will result in a slight performance
improvement.

DefaultReceiveWindow
Value Type: REG_DWORD
Default: 8192
Description: The number of receive bytes AFD will buffer on a connection
before imposing flow control. For some applications, a larger value here will
give slightly better performance at the expense of increased resource
utilization. Note that applications can modify this value on a per-socket basis
with the SO_RCVBUF socket option.

DefaultSendWindow
Value Type: REG_DWORD
Default: 8192
Description: Similar to DefaultReceiveWindow, but for the send side of
connections.

BufferMultiplier
Value Type: REG_DWORD
Default: 512
Description: DefaultReceiveWindow and DefaultSendWindow get divided by
this value to determine how many messages can be sent/received before flow
control is imposed.

PriorityBoost
Value Type: REG_DWORD
Default: 2
Description: The priority boost AFD gives to a thread when it completes I/O
for that thread. If a multithreaded application experiences starvation of some
threads, reducing this value may remedy the problem.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 71

IrpStackSize
Value Type: REG_DWORD
Default: 4
Description: The count of IRP stack locations used by default for AFD.
Changing this value is not recommended.

TransmitIoLength (new in 3.51)
Value Type: REG_DWORD
Default: PAGE_SIZE, PAGE_SIZE*2, 65536
Description: The default size for I/O (reads and sends) performed by
TransmitFile(). Note that, for Windows NT workstation, the default I/O size is
exactly one page.

Service Resolution and Registration Parameters
The following keys are used by the RNR (service resolution and registration) APIs in
Winsock. These are all just "pointers" to other items in the registry. Changing these
values is not recommended.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\ServiceProvider\Order

ExcludedProviders:
Value Type: REG_MULTI_SZ
Default: Empty Set
Description: Contains decimal values corresponding to name space providers
that should be excluded. Some name space provider decimal values include:

NS_SAP (1)
NS_NDS (2)
NS_TCPIP_LOCAL (10)
NS_TCPIP_HOSTS (11)
NS_DNS (12)
NS_NETBT (13)
NS_WINS (14)
NS_NBP (20)
NS_MS (30)
NS_STDA (31)
NS_CAIRO (32)
NS_X500 (40)
NS_NIS (41)

For example, setting ExcludedProviders to "1" "12" means that
GetAddressByName() will not attempt to use SAP or DNS when doing
typical name resolution operations.

ProviderOrder
Value Type: REG_MULTI_SZ
Default: Varies with installed protocols
Description: Contains strings corresponding to
keys under CurrentControlSet\Services. These keys must have a
ServiceProvider subkey that provides information about the name
space provider, especially Class and ProviderPath values.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 72

TCP/IP Name Resolution Parameters
These parameters are used by the gethostbyname() and GetAddressByName() APIs.
They are found under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\
ServiceProvider:

Class
Value Type: REG_DWORD
Default: 8
Description: This should not be changed–it indicates that TCPIP is a name
service provider.

DnsPriority
Value Type: REG_DWORD
Default: 0x7D0
Description: These priority values are used to determine the order of name
resolution. Low priority mechanisms are used first, so the default
order is: local, hosts, dns, NetBT. To alter name resolution order, re-adjust
the priority values as needed. Note that values under 1000 decimal are
considered "fast" name resolution providers, so putting network-based
resolution mechanisms like dns and NetBT at values under 1000 may have
undesirable effects.

HostsPriority
Default: 0x1F4
Description: See DnsPriority.

LocalPriority
Default: 0x1F3
Description: See DnsPriority.

NetbtPriority
Default: 0x7D1
Description: See DnsPriority.

Name
Value Type: REG_SZ
Default: "TCP/IP"
Description: Transport name. There is no need to change this.

ProviderPath
Value Type: REG_SZ
Default: "%SystemRoot%\System32\wsock32.dll"

Description: Points to the DLL that does TCP/IP name resolution. There is no need to
change this.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 73

Appendix D:
Microsoft FTP Server Configuration Parameters

Introduction
All of the FTP Server parameters are registry values located under the following
registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\FtpSvc\
Parameters

Configurable Parameters
AllowAnonymous

Value Type: REG_DWORD
Default: 1 (allow anonymous logons)
Description: If the value is non-zero, then anonymous logons are allowed.
Otherwise, (if the value IS zero), anonymous logons are not allowed.

AllowGuestAccess (new in 3.51)
Value Type: REG_DWORD
Default: 1 (allow guest-access)
Description: If this value is non-zero, then guest-access logons are allowed.
Otherwise, (if the value is zero), guest-access logons are not allowed. (Note
that guest-access has nothing to do with the "Guest" account; guest-access is
granted if the local computer's user rights policy states that "Everyone" may
access the host from the network. Any user that tries to logon with an unknown
account will be granted guest-access.)

AnnotateDirectories
Value Type: REG_DWORD
Default: 0 (don't annotate directories)
Description: If this value is non-zero, then every time a user changes
directories (sends the server a CWD command) an attempt is made to open a
file called "~FTPSVC~.CKM" in the new directory. If this file is found, its
contents are sent to the user as part of the successful reply to the CWD
command. This may be used to attach "annotations" to specific directories.
This value is used as a default for new users. Users can toggle their own
personal "annotate directories" flag with the site-specific CKM command
(SITE CKM).

AnonymousOnly
Value Type: REG_DWORD
Default: 0 (non-anonymous logons allowed).
Description: If this value is non-zero, then only anonymous logons are
allowed. Otherwise, (if the value is zero), then non-anonymous logons are
allowed as well.

AnonymousUserName
Value Type: REG_SZ
Default: "Guest"
Description: Anonymous logon alias. When a user attempts an anonymous
logon, the username specified ("anonymous") is mapped to this registry value
for the purposes of authentication and impersonation. The password for this

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 74

account is stored in an LSA secret object named
"FTPD_ANONYMOUS_DATA".

ConnectionTimeout
Value Type: REG_DWORD
Default: 600 (10 minutes)
Description: The time (in seconds) allotted to allow clients to remain idle
before forcibly disconnecting them. This prevents idle clients from consuming
server resources indefinitely. This value may be set to zero if time-outs are not
to be enforced. If set to zero, idle clients can remain connected indefinitely.

DebugFlags
Value Type: REG_DWORD
Default: 0 (no debug output)
Description: This value is used only by the debugging (checked) builds of the
FTP Server. It controls the output of various debugging information. This
value is unused by retail builds.

DefaultLogonDomain (new in 3.51)
Value Type: REG_SZ
Default: NULL (use the local computer's primary logon domain)
Description: The domain name to use when validating user logon requests if
the user did not specify a domain. If this value does not exist in the registry,
then the FTP Server will use the local computer's primary logon domain
instead.

ExitMessage
Value Type: REG_SZ
Default: "Goodbye."
Description: This is the signoff message sent to a client upon receipt of a
QUIT command.

GreetingMessage
Value Type: REG_MULTI_SZ
Default: NULL (no special greeting)
Description: This message (if it exists in the registry) is sent to new clients
after their account has been validated. In accordance with "de facto" Internet
behavior, if a client logs on as anonymous and specifies an identity starting
with “-” (minus), then this greeting message is NOT sent.

HomeDirectory
Value Type: REG_EXPAND_SZ
Default: "C:\"
Description: This is the initial "home" directory for new clients. After a new
client is validated, an attempt is made to CHDIR to this directory. If this
directory is inaccessible, the client is refused FTP services. If the CHDIR is
successful, then an attempt is made to CHDIR to a directory with the same
name as the client's username. If this fails, an attempt is made to CHDIR to a
directory called "Default". If this fails, the current directory is left at "home."
If a user finds that the home directory is inaccessible, then an event is written
to the event log indicating such.

ListenBacklog (new in 3.51)
Value Type: REG_DWORD
Default: 5
Maximum: 100

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 75

Description: This is the "backlog" parameter passed into the listen() API. This
sets the maximum number of unaccepted connections that can be queued
against the socket that listens on the main FTP port.

LogAnonymous
Value Type: REG_DWORD
Default: 0 (don't log successful anonymous logons)
Description: If this value is non-zero, then all successful anonymous logons
are logged in the system event log. Otherwise, (if the value is zero), successful
anonymous logons are not logged.

LogFileAccess
Value Type: REG_DWORD
Default: 0 (don't log file accesses)
Description: This value controls the logging of file accesses. This value can be
one of the following:
 0 = Don't log file accesses
 1 = Log file accesses to FTPSVC.LOG
 2 = Log file accesses to FTyymmdd.LOG, where yy is the year, mm is the

month, and dd is the day. A new log file will be opened every day as
necessary.

LogFileDirectory
Value Type: REG_SZ
Default: %SystemRoot%\System32
Description: This value specifies the target directory for log files. This value is
only used if LogFileAccess is not 0.

LogNonAnonymous
Value Type: REG_DWORD
Default: 0 (don't log successful nonanonymous logons)
Description: If this value is non-zero, then all successful non-anonymous
logons are logged in the system event log. Otherwise, (if the value is zero),
successful non-anonymous logons are not logged.

LowercaseFiles
Value Type: REG_DWORD
Default: 0 (don't map filenames to lowercase)
Description: If this value is non-zero, then all file names returned by LIST and
NLST commands for non-case-preserving file systems will be mapped to
lowercase. If this value is zero, then all file names will be unaltered.

MaxClientsMessage
Value Type: REG_SZ
Default: "Maximum clients reached, service unavailable."
Description: This message (if it exists) is sent to a client if the maximum
number of clients has been reached/exceeded. This indicates that the server is
currently servicing the maximum number of simultaneous clients and is
refusing additional clients.

MaxConnections
Value Type: REG_DWORD
Default: 20
Description: This is the maximum number of simultaneous clients the server
will service. This value may be set to zero if there is to be no limit on
simultaneous clients.

MsdosDirOutput

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 76

Value Type: REG_DWORD
Default: 1 (directory listings like MS-DOS®)
Description: If this value is non-zero, then the output of the LIST command
(usually sent as a result of a DIR from the client) will look like the output of
the MS-DOS DIR command. Otherwise, (if the value IS zero), then the output
of the LIST command will look like the output of the UNIX LS command.
This value also controls "slash flipping" in the path sent by the PWD
command. If this value is non-zero, the path will contain backward "\" slashes.
If this value is zero, the path will contain forward "/" slashes.

ReadAccessMask
Value Type: REG_DWORD
Default: 0 (all read access denied)
Description: This value is a bitmask and controls the "readability" of the
various disk volumes in the system. Drive A: corresponds to bit zero, drive B:
is bit 1, drive C: is bit 2, etc. A user may only read from a specific volume if
the corresponding bit is set.

WriteAccessMask
Value Type: REG_DWORD
Default: 0 (all write access denied)
Description: This value is a bitmask and controls the "writability" of the
various disk volumes in the system. Drive A: corresponds to bit zero, drive B:
is bit 1, drive C: is bit 2, etc. A user may only write to a specific volume if the
corresponding bit is set.

Optional Key: AccessCheck
There is an additional (optional) key that may exist under the Parameters key. After a
user's account/password has been validated and the server is impersonating that user, an
attempt is made to open a key named "AccessCheck." If this key exists, and the user
cannot open it, then the user is denied access to the FTP Server. If this key exists, and
the user can only open it for read access, then the user is given read-only access to the
FTP Server. This way, an administrator can create this "AccessCheck" key and attach
specific ACLs to the key. These ACLs will then control access to the FTP Server.

Microsoft Windows NT 3.5/3.51: TCP/IP Implementation Details 77

	Table of Contents
	Introduction
	Capabilities/Functionality
	Overview
	Support for standard features
	Performance enhancements
	Services available
	Internet RFCs (Requests for Comments) Supported by Microsoft Windows NT 3.5x TCP/IP

	Architectural Model
	Overview

	The NDIS lnterface and Below
	Overview
	Network Driver Interface Specification (3.0)
	Link Layer Functionality
	MTU (Maximum Transfer Unit)

	Core Protocol Stack Components and the TDI Interface
	Overview
	Address Resolution Protocol (ARP)
	ARP Cache
	ARP Cache Aging

	Internet Protocol (IP)
	Routing
	Duplicate IP Address Detection
	Multi-homing
	Classless Interdomain Routing (CIDR)
	IP Multicasting

	Internet Control Message Protocol (ICMP)
	Maintaining Route Tables
	Path Maximum Transfer Unit (PMTU) Discovery
	Use Of ICMP For Diagnosing Problems
	Flow Control Via ICMP

	Internet Group Management Protocol (IGMP)
	IP/ARP Extensions For IP Multicasting
	Multicast Extensions to Windows Sockets

	Transmission Control Protocol (TCP)
	TCP Receive Window Size Calculation
	Delayed Acknowledgments
	PMTU (Path Maximum Transfer Unit) Discovery
	Dead Gateway Detection
	Re-transmission Behavior
	TCP Keepalive Messages
	Slow Start Algorithm and Congestion Avoidance
	Silly Window Syndrome (SWS)
	Nagle Algorithm
	Throughput Considerations

	User Datagram Protocol (UDP)
	UDP and Name Resolution
	Mailslots over UDP

	NetBIOS over TCP/IP
	The Transport Driver Interface (TDI)
	TDI features

	Network Application Interfaces
	Overview
	Windows Sockets
	Applications
	Name Resolution
	Support for IP Multicasting
	The Backlog Parameter

	NetBIOS Over TCP/IP
	NetBIOS Names
	NetBIOS Name Registration and Resolution
	NetBIOS Over TCP Sessions
	NetBIOS Datagram Services

	Microsoft TCP/IP Client and Server Applications
	Overview
	Dynamic Host Configuration Protocol (DHCP)
	Obtaining Configuration Parameters Using DHCP
	Lease Expiration and Renewal

	Windows Internet Name Service (WINS)
	WINS Name Registration and Resolution
	WINS in a DHCP Environment

	Domain Name System (DNS)
	Integration of the DNS and WINS

	The Browser
	Master Browser Elections
	Maintaining Browse Lists
	Requesting Browse Lists
	The Domain Master Browser
	Browser Enhancements

	Windows NT Workstation and Windows NT Server Services
	Logging On
	Connecting to Network Resources
	Optimizations

	Microsoft Remote Access PPP/SLIP Support
	RAS Servers
	RAS Clients
	Using RAS To Route Between Networks
	Bandwidth Considerations

	Simple Network Management Protocol (SNMP) Agent

	TCP/IP Troubleshooting Tools and Strategies
	Overview
	IPConfig
	Ping
	ARP
	Tracert
	Route
	Netstat
	NBTStat
	Performance Monitor
	Microsoft Network Monitor
	The Microsoft KnowledgeBase (KB)
	Summary

	Appendix A: TCP/IP Configuration Parameters
	Introduction
	Standard Parameters Configurable using the Registry Editor
	Optional Parameters Configurable using the Registry Editor
	Parameters Configurable from the NCPA
	Parameters Configurable via the Route.exe Command in Windows NT 3.51
	Non-Configurable Parameters

	Appendix B: NetBT (NetBIOS over TCP) Configuration Parameters
	Introduction
	Standard Parameters Configurable from the Registry Editor
	Optional Parameters Configurable from the Registry Editor
	Parameters Configurable from the NCPA
	Non-Configurable Parameters

	Appendix C: Windows Sockets (AFD.SYS) Registry Parameters
	Introduction
	Performance-Related Values
	Service Resolution and Registration Parameters
	TCP/IP Name Resolution Parameters

	Appendix D: Microsoft FTP Server Configuration Parameters
	Introduction
	Configurable Parameters

